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Abstract. The monitoring of large crowds is essential to optimize traf-
fic flows, ensure safety at large-scale events, and plan effective evacu-
ation routes during emergencies. However, such monitoring rightfully
leads to privacy concerns, especially when tracking individuals rather
than groups. Existing approaches attempt to address these concerns by
pseudonymizing personally identifiable information and restricting the
analysis to statistical counts. However, these methods fail to preserve
privacy, particularly when small groups can be correlated with external
data. To combat this issue, we leverage the idea that crowd monitor-
ing applications are interested in only large crowds (e.g., > 100 people)
and can deal with low noise levels (e.g., it does not matter whether we
count 95 or 105 people). We propose and evaluate two methods that not
only protect individual data, but also enhance privacy by introducing
varying levels of controlled noise: higher for smaller groups and lower for
larger crowd movements. These methods include probabilistically: (1)
sampling hash functions and (2) sampling detected identifiers. We show
that our methods significantly reduce the risk of re-identification in small
crowds while maintaining high precision in large crowd estimations, mak-
ing them highly effective for privacy-preserving crowd monitoring.

Keywords: Crowd monitoring, pedestrian dynamics, privacy preservation,
Bloom filters, homomorphic encryption, privacy-by-design.

1 Introduction

Comprehending the crowd dynamics has been a long-standing focus in scientific
research. Data collected from crowd behavior can be applied in various fields
such as urban planning [1], tourism [2], and enhancing safety and security [3].
Automatic measurement of crowd dynamics enables the gathering of more precise
data and is more convenient compared to manual methods. To automate the
process, scanners can be installed in public spaces to collect unique identifiers,
such as MAC addresses of mobile devices or public transport card identifiers, for
each individual. By gathering these identifiers (which can be subject to erroneous
detections), interested parties can estimate the crowd size near those scanners,
as well as the size of the flows between them. Handling data related to crowds
has always been a sensitive and complex challenge. In this work, we distinguish
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two situations. The first is to count individuals at a specific location and time.
The second and most challenging situation involves counting people over time
(and perhaps across multiple locations). 1

In the first case, we can resort to counting detections of unique identifiers
during a very short measurement interval (say, a few seconds to at most a few
minutes), after which identifiers can be discarded. This limits storing identifiers
to a location and time in which they were collected and leaves only the count
for further processing.

However, in the second case, we need to store identifiers for future re-
identification. Even if an identifier itself cannot be used for the identification
of a natural person, as is the case with pseudonyms, storing an identifier for
re-identification can easily lead to recognition of patterns that do lead to such
identification. For example, Montjoye et al. [4] discuss that just four spatio-
temporal data points are sufficient to uniquely identify 95% of individuals.

In the context of crowd monitoring systems, there are two fundamental issues
that must be considered to prevent individuals from being tracked. First, data
protection, which refers to ensuring that identifiers and even pseudonyms are not
disclosed to unauthorized parties. Second, ensuring data privacy, which refers to
preventing (at all times) the identification of natural persons to unauthorized
parties when given the information provided by that system. Although there is
existing literature on data protection, ensuring data privacy is much harder, as
we cannot foresee which additional information may be available to a party us-
ing the system or how the provided information will be used. We observed that
existing methods, at best, provide data-protection techniques to count individ-
uals at a specific time. Some approaches also provide data protection over time
using anonymous identifiers or encrypted data [5], yet fail to protect privacy.
Our novel contribution is to introduce a method that ensures both privacy and
data protection.

In our approach, we trust the detecting devices but do not extend this trust
to any other party, including the server responsible for performing further pro-
cessing. For data protection, we store the pseudonyms in Bloom filters (BFs), i.e.
probabilistic data structures supporting approximate set operations. After en-
cryption and shuffling, these Bloom filters can be used only for intersection oper-
ations and cardinality estimations (and not for membership testing). Encryption
ensures that even if the server is compromised, it cannot extract individual iden-
tifiers from the data. Shuffling further enhances protection by randomizing the
order of bits in the BF, preventing an attacker from inferring membership from
the bit positions. Given our data protection measures, breaching privacy is still
possible when only a few people are counted: if we count only 1 person at location
A, then having additional information about occupancy at A, re-identification
can be relatively easy. To prevent such re-identification attacks, we intentionally
introduce uncertainty especially when counting a small number of individuals,
yet retain high precision for large groups. The intuition behind our approach
1 In this paper, we use pedestrian monitoring as an example, but we can also count

more diverse groups of people.
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is that, in small groups, sampling may not provide a precise representation of
the population, which can help protect privacy. However, in larger groups, the
sample size also increases, resulting in more precise and reliable estimations. We
use this property to deliberately reduce the precision of small crowd estimates
in favor of privacy protection. We discuss two different sampling methods:

1. Sampling hash functions
2. Sampling identifiers

The source code for evaluating our methods is publicly available.2

2 Related Work

For years, monitoring crowd behavior has been a focus of research, taking ad-
vantage of technologies such as Wi-Fi signals and unique device identifiers (e.g.,
MAC addresses) to estimate crowd densities, flows, and mobility patterns [6,7,8].
These systems typically rely on the detection of signals emitted by devices car-
ried by individuals, such as smartphones or other Wi-Fi-enabled devices. By
capturing and analyzing these signals, researchers can derive valuable insights
about crowd behavior. However, these methods often compromise privacy by
allowing the tracking and profiling of individuals without their consent [9].

To address these concerns, randomization of MAC addresses was introduced
as a countermeasure. This approach ensures that devices periodically generate
and use fake MAC addresses instead of their real ones. Although this method
mitigates tracking to some extent, studies have shown that inconsistent imple-
mentations between different manufacturers still allow reidentification [10]. This
limitation exposes individuals to potential privacy breaches. Moreover, for our
use case, this limitation significantly impacts the accuracy of crowd flow estima-
tion, undermining the reliability of the data collected for monitoring purposes.

Alternative approaches, such as pseudonymization using hash functions or
encryption, have also been explored to mask identifiers [11,12]. In pseudonymiza-
tion, original identifiers are transformed into pseudonyms through methods such
as one-way hash functions or deterministic encryption schemes. However, due
to the limited identifier space (e.g., MAC addresses are effectively limited to
224 bits), pseudonyms remain vulnerable to brute-force attacks [13,14]. These
weaknesses highlight the need for stronger privacy-preserving mechanisms.

Some methods focus on aggregating data to enhance privacy. Linear count-
ing sketches [15] and k-anonymity-based approaches [11] enable crowd size es-
timations by grouping data together, making individual identifiers less distin-
guishable. Similarly, encrypting identifiers in Bloom filters ensures that statisti-
cal counts can be obtained without exposing individual identities [5]. However,
these methods are not foolproof, as linkage with external data sources can lead
to reidentification, especially in sparsely populated areas.

Other privacy-preserving systems, such as DEVCNT [16], avoid completely
collecting unique identifiers. Instead, DEVCNT estimates the number of devices
2 https://anonymous.4open.science/r/private-bloom-filter/

https://anonymous.4open.science/r/private-bloom-filter/
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in a crowd by detecting and counting active scan events. Although this avoids
direct data protection issues, it limits the system to simple counting operations
and lacks support for more complex queries, such as intersections or crowd-
flow size estimation across locations. These methods collectively underscore the
persistent challenge of balancing utility with robust privacy. Although existing
techniques offer partial solutions, they often fail to provide the comprehensive
privacy guarantees required for practical crowd monitoring systems.

RAPPOR [17] employs a different strategy using differential privacy. It en-
codes data into Bloom filters and introduces random noise to obscure individual
contributions. RAPPOR is specifically designed for web tracking applications,
such as extracting the most frequently visited websites, and does not address
Bloom filter intersection challenges for computing the size of crowd flows. Ke et
al. [18] introduced DPBloomfilter, which integrates the Randomized Response
mechanism into the Bloom filter to achieve differential privacy for membership
queries. Their approach addresses the risks of individual data leakage in stan-
dard Bloom filters. Their work primarily focuses on static membership queries,
not addressing dynamic crowd flow estimation across locations or epochs, a key
feature of our system. Rusca et al. [19] proposed a WiFi-based crowd moni-
toring system using Bloom filters with fixed initial noise to ensure deniability.
However, this added noise cancels out during Bloom filter intersections, making
their approach unsuitable for our goal, preserving uncertainty in small group
counts during crowd flow analysis.

Recent research has also focused on developing location privacy-preserving
techniques for location-based services (LBSs), primarily to prevent adversaries
from tracking users, inferring movement patterns, and profiling them. As sur-
veyed by Jiang et al. [20], common approaches include spatial cloaking, dummy
locations, differential privacy, and cryptographic techniques such as homomor-
phic encryption and secure multiparty computation. These methods typically
obfuscate location data to protect individual privacy. However, our focus dif-
fers from these approaches as we aim to develop a crowd-counting mechanism
that preserves privacy. Our method ensures that when the number of people
in a location is small, the exact count remains uncertain by design to prevent
re-identification. Since LBS privacy techniques focus primarily on anonymizing
movement data, they are not directly applicable to our problem.

3 System and Threat Model

Figure 1 shows the setup of our crowd monitoring scenario. We consider a set of
trusted scanners S = (s1, ..., sn) that are deployed in various locations to detect
unique identifiers of people. These scanners record all detected identifiers in a
predetermined time, which we call an epoch ei. At the end of an epoch, the
scanners send their detections to a central processing server p that stores these
detections, to continue recording during the next epoch. Authenticated clients
C = (c1, ..., cm) can subsequently query this server for the size of a crowd in a
certain location. We distinguish two types of query:
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Fig. 1: Overview of the crowd monitoring system setup. Sensors S = (s1, ..., sn)
collect identifiers, process these and send them to a central processing server.
Clients subsequently issue footfall or crowd flow queries to estimate the number
of people at given locations.

– Footfall : the number of people in a single location during a single epoch.
– Crowd flow : the number of people traveling between different locations dur-

ing a series of (not necessarily consecutive) epochs.

Formally, we define these queries as:

Definition 1. Footfall: Let Ds,e be the set of detections made by a scanner s
during epoch e. The footfall provided by this scanner is the total count of unique
detections |Ds,e|.

Definition 2. Crowd flow: Consider a set of scanners S∗ ⊆ S, a series of
(not necessarily consecutive) epochs E∗ = [e∗1, e

∗
2, . . . , e

∗
k], along with a series of

scanner-epoch pairs SE = [(s∗1, e
∗
1), . . . , (s

∗
k, e

∗
k)], with s∗i ∈ S∗ and e∗i ∈ E∗.

Let Ds∗i ,e
∗
i

be the set of detections by s∗i during epoch e∗i . For a given set of
scanner-epoch pairs SE, the size of the crowd flow is defined as the size of the
intersection of these detection pairs: |

⋂
(s∗i ,e

∗
i )∈SE Ds∗i ,e

∗
i
|.

Threat Model

The goal of this work is to provide both data protection and privacy preser-
vation. In this model, we assume that all scanners are trusted, meaning that
they can collect and process all identifiers. This is a realistic assumption as ad-
versaries could circumvent the entire system by placing their own scanners to
identify individuals. However, the other parties, i.e. the processing server and
clients performing queries cannot learn the original identifiers (data protection),
and should not be able to trace an individual with complete certainty (privacy
preservation). We assume an honest but curious setting, where all parties follow
the given protocol but will try to infer as much information as possible from
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the system. In this work, we focus mainly on the preservation of privacy, as we
build upon other works that provide solutions only for data protection (see Sec-
tion 4). Hence, for simplicity and better understanding, we describe our protocol
in a plaintext variant and in Section 7, we describe how the protocol can be ex-
tended with homomorphic encryption to provide the additional data protection
guarantees that other works have already introduced.

4 Background

Fig. 2: Behavior of Bloom filter intersection. Intersecting two Bloom filters with
(m = 8, k = 2) by bitwise multiplication, the result is not the same as the Bloom
filter of their intersection.

In this paper, we propose methods to enhance privacy in crowd monitoring
systems, based on the model introduced by [5], which guarantees data protection.
Their system and threat models are similar to ours, except that we focus on
privacy preservation on top of data protection. We aim to develop a crowd-
monitoring system that preserves privacy and is capable of answering two key
types of queries, footfall and crowd flow. Footfall is measured by the cardinality
of a single detection set at a specific scanner and epoch, whereas crowd flow is
determined by the cardinality of the intersection of detection sets collected from
multiple scanners across different time epochs. Stanciu et al. [5] let each scanner
store its detections during an epoch in a local Bloom filter. After the epoch,
the Bloom filter is encrypted (homomorphically) and sent to a central server for
further processing. The scanner subsequently discards all detections and creates
a new, empty Bloom filter for the next epoch.

A Bloom filter [21] is a probabilistic data structure used to store whether
elements are part of a set, consisting of an array of m bits, initially each set
to 0, along with k different hash functions. When adding an element a, the k
hash functions are computed on a. Each result points to one of the m array
positions, which is then set to 1. To check whether an element is a member
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of a set, one needs to verify whether all the positions indicated by the k hash
functions are set to 1. If we have two sets, A and B, represented as Bloom
filters BF (A) and BF (B), respectively, the intersection A∩B is constructed by
computing the bitwise AND operation on BF (A) and BF (B) (see Figure 2),
where we assume that both Bloom filters have the same length m and use the
same k hash functions. Due to the probabilistic nature of Bloom filters, the
result approximates the intersection of A and B, yet is not guaranteed to be
the same as BF (A ∩ B). Bloom filters may reveal false positive membership
tests (false negatives cannot occur). This is because positions associated with an
element can also be marked as 1 by the hashes of other elements. However, the
parameters of the Bloom filter can be adjusted to achieve a desired probability
of false positives (p) when the maximum number of elements in the set (n) is
known.

We use Bloom filters to compute footfall and crowd-flow queries, considering
the cardinality of the sets involved. The cardinality of a Bloom filter c can be
estimated using the following formula, where t is the number of bits set to 1:

c = −m

k
ln

(
1− t

m

)
(1)

To perform a query, the system follows this procedure. Scanners encode their
detections into Bloom filters and transmit them to the server at the end of each
epoch. To ensure data protection, each Bloom filter is encrypted using a homo-
morphic encryption scheme before transmission. This allows the server to pro-
cess the data—such as computing intersections for crowd flow queries—without
learning the underlying identifiers. Upon receiving a query from a client, the
server begins crafting a response by gathering the necessary data generated by
scanners. For crowd flow queries, it generates a new Bloom filter through a bit-
wise AND of the corresponding Bloom filters. Then, it shuffles the positions to
obscure any discernible patterns, transforming the Bloom filter into a random-
ized array of 0s and 1s (but without affecting the number of bits set to 1), before
delivering the result to the client. The server is trusted to conduct the shuffling,
as it is considered an integral part of the protocol, with the assumption that it
will execute it accurately. After decrypting the shuffled Bloom filter, the client
computes the desired statistical count using Eq. 1, as the count of 1s remains
unaffected by the shuffling.

Stanciu et al. [21] proposed that the exclusive provision of statistical counts
for crowd monitoring data could protect privacy, rather than using techniques
such as anonymization, which removes personal identifiers. However, statistical
outputs still present risks of individual identification. Using publicly available
statistics, adversaries can conduct reconstruction attacks with the objective of
identifying probable instances of individuals. These statistical reports can be
linked to additional data using linkage techniques (see Vatsalan et al. [22]).
Providing additional data about the monitored group becomes simpler when the
group size is smaller, thus making the attack easier.



8 F. Marzani et al.

5 Methods

Regardless of the estimator we use for counting footfall or crowd flow, our goal is
to have relatively high precision for high counts and low precision for low counts
to protect privacy. Estimators operating on Bloom filters rely on the count of
bits set to 1. Our key insight is to introduce controlled imprecision by giving
a consumer access to a sample t∗ of the actual number of bits t from which
they can estimate the original count. The smaller the subset, the less precise
the estimation, which helps obscure individual contributions to small counts.
Specifically, we examine two methods to sample the number of bits that con-
tribute to the estimate t∗ < t: (1) sampling Bloom filter hash functions and (2)
sampling detected identifiers. Bloom filters inherently introduce some inaccuracy
due to false positives, and our methods leverage this property to further enhance
privacy while maintaining utility for large-scale crowd monitoring.

5.1 Sampling hash functions

In this method, we use a standard Bloom filter of size m, using k hash functions.
Each hash function hi has a probability of q being used (and thus 1 − q of
being skipped), deterministically determined by the element being inserted.3
This determinism ensures consistency when sampling hash functions are applied
to every identifier. This is crucial to maintain reliability when intersecting Bloom
filters at different locations containing the same element. This method ensures
that not all bits are used for inserting an item into the Bloom filter. By selectively
including hash functions, we effectively reduce the number of set bits. However,
given the reduced number of bits (which we call t∗), we cannot use Equation 1
as this formula assumes knowledge of the total number of bits that would be set
without using our selection method. Therefore, we estimate the value of t from
the subsample t∗ using the following formula:

t = m

(
1−

(
1− t∗

m

) 1
q

)
(2)

When substituting t in Equation 1 with the Equation 2, we can simplify the
computation for estimating the count of inserted items to:

c = − m

k × q
ln

(
1− t∗

m

)
(3)

We have proved the derivations in Appendix 9.

5.2 Sampling identifiers

Consider a standard Bloom filter with a length of m and k hash functions. To
reduce the number of bits to be used to estimate the size of the original set, each
3 Using a seeded random function where the inserted element determines the seed.
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identifier is inserted into the Bloom filter with probability q. It is crucial for this
process to yield consistent decisions for each identifier to ensure the reliability
of Bloom filter intersections when computing crowd flow. In other words, the
decision to insert the detection of identifier ID is always the same, independent
of when and where ID is detected. The total number of items inserted into the
Bloom filter is estimated by modifying the original formula to account for the
sampling identifier with probability q, as shown in Equation 3.

6 Evaluation

In this section, we evaluate how effectively our solutions estimate statistical
counts for both footfall and crowd flow while enhancing privacy through con-
trolled uncertainty, particularly in low-density crowd areas. While simple footfall
counts can be directly obtained from Bloom filters without additional process-
ing, crowd flows involve analyzing movement patterns across different locations
or times, which requires processing intersected Bloom filters. We use generated
detections 4 instead of real-world detections because they allow us to precisely
control and measure privacy across a wide range of crowd flow scenarios, en-
abling us to comprehensively evaluate the precision of the system. Specifically,
we compare the system’s estimated statistical output with actual values ob-
tained from controlled simulations. We performed 1, 000 repeated experiments
using both the standard Bloom filter used in [5] and our sampling techniques,
thoroughly evaluating their uncertainty levels across varying footfall and crowd
flow sizes. To do so, we explore different combinations of parameters for Bloom
filters and sampling methods. For the hash functions of the Bloom filters, we use
MurmurHash35 for its efficiency and use of seed, providing an arbitrary number
of hash functions.

The estimated number of identifiers in a Bloom filter may differ from the
actual count for two reasons. First, the estimation is based on the probability
of certain bits being set, which can vary as hash functions in Bloom filters
have a probability of mapping different elements to the same position. Second,
hash collisions during the intersection of multiple Bloom filters can cause bits
to be marked incorrectly (see Figure 2), leading to discrepancies in the count
for crowd flow queries. When we use sampling methods instead of inserting all
crowd detections into Bloom filters, we expect significant differences between
the actual count and the estimated count, especially with low actual counts and
sampling does not provide a reliable representation.

We used the Root Mean Square Error (RMSE) to evaluate how closely the
estimated count of inserted identifiers in the Bloom filter matches the actual
count. It serves as a statistical measurement of the average deviation of predicted
4 To have precise control over the size of detection sets and the count of shared identi-

fiers between them, we generate sets of random unique identifiers to directly represent
detections, mimicking pre-collected data.

5 A. Appleby, MurmurHash3, 2016. Available at: https://github.com/aappleby/
smhasher/wiki/MurmurHash3

https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://github.com/aappleby/smhasher/wiki/MurmurHash3
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values from actual values. In this research, RMSE quantifies the precision of the
estimated count by measuring how closely it aligns with the actual count over
1, 000 repeated experiments.

RMSE =

√√√√ 1

x

x∑
i=1

(cti − ci)2 (4)

Here, x represents the total number of experiments (x = 1, 000), cti represents
the actual count of inserted identifiers, and ci represents the estimated count. A
lower RMSE value indicates better agreement between the estimated and actual
counts, reflecting higher precision in the estimation process.

By employing RMSE, we can calculate the relative error using the formula:

relative error = max

(
0,

ct ± RMSE
ct

)
(5)

Here, ct represents the actual count of inserted identifiers. Relative error rep-
resents the range within which the estimated value lies relative to the actual
value, expressed as a ratio of the actual value. For a specific estimated value, if
relative error = 1, then the estimated value is equal to the true value, which in-
dicates that there is no deviation. If relative error > 1, then the estimated value
is greater than the true value, suggesting an overestimation. If relative error < 1,
then the estimated value is lower than the true value, indicating an underesti-
mation. We select the maximum value between 0 and the computed error. Since
we cannot predict a negative number of observations for footfall or crowd flow,
estimating a negative value lacks a meaningful interpretation.

6.1 Footfall queries

To evaluate the impact of the proposed methods on the uncertainty of footfall
query estimation, we use a standard Bloom filter configured for 1, 000 insertions
(n = 1, 000) and a false positive rate set at 0.01 (p = 0.01). Using the formulas
m = −n ln p

(ln 2)2 and k = log2 p we determine the length of the Bloom filter (m =

9586) and the optimal number of hash functions (k = 7) based on the given
parameters n and p. Subsequently, we ran experiments by inserting detection
sets ranging in size from 1 to 1, 000 into the Bloom filter. Each experiment is
repeated 1, 000 times with distinct sets of identifiers to ensure the robustness of
our evaluation. Finally, we compute the Root Mean Square Error (RMSE) for
footfall queries. In this section, we outline the configurations employed for each
method and subsequently present the results obtained.

Sampling hash functions. We conducted experiments using different proba-
bility values, q ∈ {0.01, 0.02, 0.04, 0.0833, 0.1667, 0.3333, 1}.6 In Fig. 3a, the ob-
served trends and values align closely with our expectations, reducing the value
6 Reflecting sampling rates of one out of 100, 50, 25, 12, 6, 3, and 1, respectively.
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of q results in a higher relative error. This effect becomes especially notable when
handling a small number of observations, while its impact diminishes for larger
footfall sizes. For privacy-sensitive footfall sizes, particularly when the footfall
size is 1, the system provides an intentionally uncertain output to enhance pri-
vacy. In this case, there is only a single detection, making direct estimation
highly sensitive. When using a standard Bloom filter (q = 1), the relative er-
ror remains between 0.99 and 1.00. However, setting q to 0.3333 significantly
increases the relative error, expanding its range to 0.20-1.79. When q is reduced
to 0.01, the error range broadens drastically to 0–4.41, introducing uncertainty
that effectively protects individual privacy. A relative error close to 1 suggests
that the estimated count is highly precise. However, larger relative errors (e.g.,
0–4.41 for q = 0.01 and footfall size 1) indicate greater uncertainty in the esti-
mated count, making it difficult to determine the exact number of detections.
This design choice prioritizes privacy for small footfall sizes. For larger footfall
sizes, the relative error stabilizes. When the footfall size is 1, 000, a standard
Bloom filter (q = 1) yields a relative error range of 0.99–1.00. With q = 0.3333,
this range slightly shifts to 0.98–1.01, while reducing q to 0.01 results in an er-
ror range of 0.88–1.11. Since the relative error stays close to 1, the estimations
remain reliable and useful for planning.

Sampling identifiers. In methods 5.1 and 5.2 described, the parameter q de-
termines whether to include an item (regardless of whether we are dealing with
a hash function or an identifier) in the Bloom filter. However, its effect on the
Bloom filter may vary due to the context in which it is used. In method 5.1, q
determines the probability of executing each hash function during the insertion
of an item into the Bloom filter. This means that for each hash function, there
is a chance of q that it will be applied. In method 5.2, q represents the prob-
ability of including an identifier in the Bloom filter. This probability directly
influences the level of privacy and the number of identifiers stored in the Bloom
filter. A lower q means that fewer identifiers are stored, improving privacy by
reducing the likelihood of individual identification. In contrast, a higher q results
in more identifiers being included, potentially compromising privacy by making
individual representations more precise.

To assess the impact of detecting an identifier and to ensure a fair comparison
with sampling hash functions, we use the same set of q values for our experiments.
The results are shown in Fig. 3b. As expected, decreasing the value of q correlates
with an increase in relative error. This increase becomes particularly noticeable
when dealing with a limited number of detections, whereas its impact diminishes
for larger footfall sizes. For example, when q is set to 1 (i.e., using a standard
Bloom filter) with a footfall size of 1, the relative error ranges between 0.96 and
1.03. However, with q set to 0.3333, the relative error increases substantially,
ranging from 0 to 2.40. Setting q to 0.01 further increases the error range between
0 and 11.40. The broader range of error observed with smaller footfall sizes offers
advantages in terms of privacy concerns. In contrast, with a footfall size of 1, 000,
the use of a standard Bloom filter produces a relative error range of 0.99 to 1.00.
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When q is adjusted to 0.3333, this range changes to 0.95 and 1.04, while setting
it to 0.01 causes the range to expand merely to 0.69 and 1.30.

When comparing the results of sampling hash functions (method 5.1) and
sampling identifiers (method 5.2), we observe similar overall trends. In both ap-
proaches, reducing q significantly increases the relative error for smaller footfall
sizes, providing greater privacy compared to the standard Bloom filter (q = 1)
used in [5]. For q = 0.01 both methods introduce a substantial increase in rela-
tive error for small footfall sizes, reflecting their shared goal of obscuring indi-
vidual detections. However, sampling identifiers (method 5.2) generally result in
a wider error range compared to sampling hash functions (method 5.1), particu-
larly when the footfall size is as low as 1. For larger footfall sizes, the difference
between the two methods becomes less significant. Both converge to a relative
error close to 1.

(a) Sampling hash functions to include.

(b) Sampling identifiers to include.

Fig. 3: Relative error of footfall queries. Footfall size ranging from 1 to 1,000.
Bloom filter parameters: n = 1, 000 and p = 0.01 using our proposed method.
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6.2 Crowd-flow queries

Crowd flow is determined by the size of the intersection of multiple detection
sets at different locations. In the system, these detection sets are represented
by Bloom filters. To compute the size of the intersection of these Bloom filters,
we use bitwise multiplication, which provides an estimate of the intersection of
the underlying sets within the Bloom filters. It is important to note that the
Bloom filter resulting from the bitwise multiplication operation on Bloom filters
representing sets of detections is different from the Bloom filter representing the
intersection of those sets of detections. Specifically, the same bits may be set in
two Bloom filters, BF1 and BF2, due to different elements: one belonging only
to BF1 and the other only to BF2. These bits will be incorrectly set to 1 in the
bitwise multiplied Bloom filter (see Fig. 2). Consequently, the resulting number
of set bits in the bitwise multiplied Bloom filter may not accurately represent
the cardinality of the intersection of the two sets.

The number of bits set after performing a bitwise multiplication on BF1 and
BF2, denoted as t∧, is the sum of two terms:

– The number of bits set due to the actual intersection of elements in both
sets (t∩).

– The number of bits set caused by the hash collisions described above (rbits).

Consequently, the resulting Bloom filter from the bitwise multiplication of Bloom
filters representing detection sets may differ from the Bloom filter representing
their actual intersection. Thus, the formula used to estimate the number of com-
mon detections in sets tends to overestimate the actual counts. Papapetrou et
al. [23] proposed an enhancement in estimating the number of common detec-
tions by incorporating not just the 1’s in the resulting Bloom filter, but also
those in the Bloom filters employed for bitwise multiplication. For t1, t2, and t∧,
representing the counts of bits set to 1 in two Bloom filters to be multiplied and
in the resulting Bloom filter, respectively, the estimation formula is as follows:

c∧ =
ln(m− t∧×m−t1×t2

m−t1−t2+t∧
)− ln(m)

k × ln(1− 1
m )

(6)

To optimize two Bloom filters and assess the impact of our methods on crowd
flow, we use the following setting. To reduce the impact of rbits on the inter-
section and optimize the Bloom filters, we create a larger but sparser Bloom
filter as suggested by Mitzenmacher [24]. Sparse Bloom filters have low entropy,
which decreases the possibility of hash collisions. We design the Bloom filters
for 10, 000 items and a false positive rate of 0.01. Then, we insert two randomly
generated sets, each containing 1, 000 detections. We varied the number of com-
mon detections from 1% to 100% of the respective total detections of 1, 000
individuals.

To apply Eq. (6), a consumer would require knowledge of the responses to
associated footfall queries alongside the crowd-flow query, allowing for the deter-
mination of parameters t1 and t2. This approach aligns with our system model, as
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consumers are allowed to initiate such queries and does not entail any additional
computationally intensive operations. To prevent leaking information from other
queries, one potential approach is to use fully homomorphic encryption (FHE)
which would allow the server to perform calculations for crowd flow using pa-
rameters such as t1, t2, and t∧ on encrypted data. The final output (crowd flow)
remains encrypted, and only the consumer can decrypt it. This ensures that all
intermediate data and computations remain secure, preventing accidental data
exposure. We discuss this idea in more detail in Section 7.1. We employ equa-
tion 6 throughout the evaluation to estimate statistical counts on crowd flows,
where we are especially interested in the error of our count compared to the
actual size of the crowd flow. Adjustments to the formula are necessary for each
method based on the sampling parameters.

(a) Sampling hash functions to include.

(b) Sampling identifiers to include.

Fig. 4: Relative error of crowd flow queries with a crowd size of 1,000 in both
locations, and a crowd flow size ranging from 0 to 1,000. Bloom filter parameters:
n = 10, 000 and p = 0.01 using our proposed method.
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Sampling hash functions. We conducted experiments with different proba-
bility values q ∈ {0.01, 0.02, 0.04, 0.0833, 0.1667, 0.3333, 1}. Analogous to Equa-
tion 3, we adjusted the crowd-flow estimation formula (6) to:

c∧ =
ln
(

(m−t∗1)×(m−t∗2)
m×(m−t∗1−t∗2+t∗∧)

)
k × q × ln

(
m−1
m

) (7)

The results are shown in Fig. 4a. The results indicate that smaller values of
q introduce greater uncertainty in crowd-flow estimation compared to using the
standard Bloom filter with q = 1. Specifically, for small groups (e.g., crowd-flow
size = 1), the relative error range is wider for smaller values of q. For example,
when q = 0.01, the error can reach 5.64 for a crowd-flow size of 1, compared to
an error of 3.23 when q = 1. By increasing the error in estimations, it becomes
more difficult for an observer to determine the exact number of individuals in
the crowd flow, thereby protecting individual privacy.

In larger crowds (e.g., crowd-flow size = 1, 000), the relative errors decrease,
but remain slightly higher for decreased values of q. For example, at q = 1, the
narrow error range is between 0.998 and 1.002, while at q = 0.01, the relative
error range is between 0.88 and 1.12. This shows that the system maintains
accuracy and precision in estimating larger crowd sizes, ensuring that it is useful
for planning and management.

Optimizing the value of q depends on the specific requirements of the ap-
plication for privacy and utility. Smaller q values are beneficial for improving
privacy in smaller groups, while maintaining higher q values ensures accurate
estimation of crowd-flow sizes.

Sampling identifiers. For a fair comparison of the methods, we repeated the
experiment using the same set of probability values q. Since we are sampling iden-
tifiers with a probability of q, we adjust the crowd-flow estimation formula (6)
by dividing it by q. This adjustment makes the formula equivalent to (7).

The results (in Fig. 4b) show that we achieved our goal of introducing a
higher relative error in small groups for privacy preservation by decreasing the
sampling probability q. Specifically, for small groups (e.g., crowd-flow size = 1),
the relative error is significantly higher for lower values of q, with an error of
11.26 for crowd flows of size 1 when q is 0.01 and 3.26 when q is 1. This higher
error occurs because smaller groups have fewer identifiers, and sampling at lower
probabilities reduces this even more. This makes the estimation less accurate
and more random, which helps to protect individual privacy in less crowded
areas. In contrast, for larger crowds (e.g., crowd-flow size = 1, 000), the relative
error remains relatively small across all values of q. Even at the lowest sampling
probability of q = 0.01, the error is only 1.31, and decreases further as q increases,
reaching 1.00 at q = 1. This indicates that the system remains reliable and precise
for crowd flow size estimation in crowded areas, making it effective for planning
and management purposes.

Overall, both sampling hashes and detected identifiers effectively balance
privacy preservation in small groups with precise crowd flow size estimation in
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larger groups. In Section 7.4 we compare the two methods in terms of potential
privacy breaches.

7 Discussion

7.1 Privacy enhancement using fully homomorphic encryption

Fully homomorphic encryption (FHE) [25] enables both addition and multi-
plication operations on encrypted data, allowing confidential computations re-
quired for privacy enhancement. By applying FHE, statistical computations,
such as counting set bits in an Encrypted Bloom Filter (EBF), can occur with-
out decryption. Unlike the current approach requiring server shuffling of EBFs,
FHE eliminates the client’s access to raw data. The result—a simple, encrypted
count—is returned to the client, ensuring that the Bloom filters remain confi-
dential, regardless of server behavior. While FHE provides significant privacy
advantages, Bloom filters’ size intensifies computational overhead. Segmenting
Bloom filters into smaller blocks is a potential optimization for future research.

7.2 Identifiers for detection of individuals

Crowd-monitoring systems study pedestrian activity in public areas using sen-
sors to gather identifiable data. Although our approach is independent of the
chosen identifiers, some identifiers may be more suitable than others. In [5],
the authors suggest using the MAC addresses of devices carried by individuals
as identifiers. Recently, many Wi-Fi enabled devices have started using MAC
address randomization. This means that devices replace their original MAC ad-
dresses with random ones during probe requests, according to the manufactur-
ers’ rules. The system can accurately estimate the number of devices, and thus
the number of individuals, as long as each identifier belongs to a single device.
However, some randomization techniques assign multiple identifiers to a single
device, which can cause potential problems. For example, if a device uses several
random MAC addresses within the same epoch, it can result in overestimating
footfall. Additionally, if devices change their MAC addresses between epochs,
it can easily cause underestimation of crowd flows, as the same device might
be seen as different ones. To address these challenges, future work should focus
on finding more reliable identifiers to accurately count footfall and crowd flow
sizes.Although identifiers such as MAC addresses are generally subject to consent
requirements, our system avoids this by ensuring privacy by design. Identifiers
are processed only within trusted scanners, immediately encoded into encrypted
Bloom filters, and then discarded. No raw or linkable data is stored or transmit-
ted, and outputs are noisy and aggregated, preventing identification and need
for consent.

7.3 Trade-Off between privacy and utility

We recommend optimizing hyperparameter q based on the specific application
and sensitivity to privacy. This trade-off between privacy and utility can be ad-
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justed to suit different scenarios. For scenarios prioritizing precise crowd moni-
toring with less emphasis on privacy, such as managing foot traffic during a large
public event (e.g., a music festival), higher values of q provide sufficient data for
accurate analysis of crowded areas. Conversely, in privacy-sensitive applications
(e.g., monitoring pedestrian traffic in a quiet residential neighborhood), lower
q values enhance privacy. This reduces the data granularity, ensuring residents’
privacy while still providing approximate metrics for urban planning. By ad-
justing q, we can find the right balance between privacy and utility to suit the
specific needs of the application.

7.4 Comparison of privacy-enhancing methods

We propose two methods to intentionally reduce the precision of estimates in
sparse areas, each offering privacy and utility trade-offs. Method 5.2 applies the
sampling probability q directly to the identifiers, meaning fewer identifiers are
represented in the Bloom filter. While this approach increases privacy by re-
ducing the contribution of individual identifiers, it also leads to higher errors
as fewer bits are set in the filter, lowering its precision. Moreover, this method
may not guarantee equal privacy for all identifiers. For instance, if certain iden-
tifiers are consistently included and the query result is zero, an adversary could
infer that the individual associated with the included identifier is absent, thus
compromising their privacy. On the other hand, Method 5.1 uses q to probabilis-
tically include specific hash functions, effectively controlling the number of set
bits in the Bloom filter. This approach achieves results comparable to Method 5.2
but avoids the issues associated with inconsistent identifier representation. By
balancing precision and privacy, Method 5.1 ensures that errors remain manage-
able while minimizing the risk of privacy violations. Therefore, we recommend
Method 5.1 as the preferred approach for improving privacy in crowd-monitoring
systems.

8 Conclusion

We address the challenge of protecting privacy in crowd monitoring systems
by limiting the amount of information that can be inferred about individuals.
We achieve this by carefully limiting the granularity of data, ensuring that data
about small groups is imprecise to prevent reidentification. In sparsely populated
areas, this approach reduces privacy risks, while in densely populated regions,
where accurate data is essential, our methods remain reliable and effective.

Our evaluation using simulated data confirms the effectiveness of our ap-
proach. By adjusting hyperparameters, we can balance privacy and utility, mak-
ing the system adaptable to a wide range of real-world scenarios, from large
public events to more privacy-sensitive environments. Future work should focus
on refining these techniques, particularly exploring fully homomorphic encryp-
tion to enhance privacy while limiting computational overhead. In addition, the
identification of more reliable and consistent identifiers will be crucial to improve
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the accuracy of crowd flow and footfall estimations. Our study contributes to
the development of privacy-preserving crowd monitoring systems that protect
individual privacy while delivering valuable insights for planning.
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9 Appendix

9.1 Footfall

Sampling hash functions. Starting equation:

t = m

(
1−

(
1− 1

m

)k
)

Substitute for t∗:

t∗ = m

(
1−

(
1− 1

m

)kq
)

If we let: (
1− 1

m

)
= a, then:

t

m
= 1− ak =⇒ ak = 1− t

m
(Equation I)

t∗

m
= 1− akq =⇒ akq = 1− t∗

m
(Equation II)

Apply Equation (I) into Equation (II), then:

1− t∗

m
=

(
1− t

m

)q

Taking the q-th root of both sides:(
1− t∗

m

) 1
q

= 1− t

m

Rearranging:
t

m
= 1−

(
1− t∗

m

) 1
q
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Finally:

t = m

(
1−

(
1− t∗

m

) 1
q

)
Starting equation:

c = −m

k
ln

(
1− t

m

)
Substitute:

t = m

(
1−

(
1− t∗

m

) 1
q

)
This leads to:

c = −m

k
ln

(
1− 1

m

[
m

(
1−

(
1− t∗

m

) 1
q

)])

Simplifying:

c = −m

k
ln

[(
1− t∗

m

) 1
q

]
Finally:

c = −m

k
· 1
q
ln

(
1− t∗

m

)

Sampling identifiers. When sampling the identifier to insert them into the
Bloom filter with a probability q, the standard BF estimator can be corrected
by dividing estimated value by q:

c =
c

q

9.2 crowd flow

Sampling hash functions. Let BF1 and BF2 be the Bloom filters of sets S1

and S2, respectively. The Bloom filters have length m and share the same k hash
functions. BF∧ is the Bloom filter created by a bitwise AND of BF1 and BF2.
c denotes the cardinality of S1 ∩ S2, and tx denotes the count of the true bits
set in the Bloom filter BFx. In the paper by Papapetrou et al. [23], it is proved
that:

t∧ = t∩ + rbits (8)

t∧ = t∩ +
(t1 − t∩)× (t2 − t∩)

m− t∩
(9)
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In the standard Bloom filter, the expected number of bits set to 1 after inserting
c elements using k hash functions in a Bloom filter of size m is given by:

t∩ = m

(
1−

(
1− 1

m

)c×k
)

Substituting this into the formula 9, we get:

t∧ =
t1 × t2 +m

(
1−

(
1− 1

m

)k×c
)
× (m− t1 − t2)

m(1− 1
m )k×c

(10)

Thus, in the standard Bloom filter, the expected number of common items in
both sets (c) will be:

c =
ln
(
m− t∧m−t1t2

m−t1−t2+t∧

)
− ln(m)

k ln
(
1− 1

m

)
When running each hash function with a probability of q, the expected num-

ber of bits set to 1 after inserting c elements is given by:

t∩ = m

(
1−

(
1− 1

m

)k×q×c
)

Substituting this into the formula 9, we get:

t∧ =
t1 × t2 +m

(
1−

(
1− 1

m

)k×q×c
)
× (m− t1 − t2)

m(1− 1
m )k×q×c

(11)

Thus, the expected number of common items in both sets (c) is:

c =
ln
(

(m−t1)×(m−t2)
m(m−t1−t2+t∧)

)
kq ln

(
m−1
m

)
Sampling identifiers. When sampling the identifier to insert them into the
Bloom filter with a probability q, the standard BF estimator can be corrected
by dividing estimated value by q:

c =
c

q
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