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Preface

This thesis marks the end of my studies in Civil Engineering at TU Delft. Seven years ago, I started
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my studies, I gained a lot of knowledge about the different aspects in mobility. I chose the topic of disap-
pearing traffic for my thesis because I am motivated to make cities more liveable, and I was genuinely
curious about how disappearing traffic works. The process was challenging at times, especially in the
beginning when I was unsure whether the model would be feasible to construct. But figuring it out, step
by step, made the end result all the more rewarding.

Without the help of my supervisors, this project wouldn’t have been possible. I would like to thank my
committee for their guidance throughout this process. Maaike, for being the chair of my committee and
for connecting me to the XCARCITY project, of which this thesis is a part. Victor, for his valuable input
in shaping this research, and for providing a space where I could share my thoughts and freely discuss
ideas. I also want to thank Robbert and Will from the Municipality of Rotterdam for their support during
this thesis. They not only guided me but also gave me hands-on experience with real projects and an
inside look at working for a municipality.

Besides my supervisors, I am also grateful to my colleagues at the Municipality of Rotterdam, who
were always willing to answer my questions and made my time at the office enjoyable. Additionally, I
want to thank my university friends for making the thesis room a great place to work, and for providing
much-needed relaxation outside of working hours, whether it was grabbing a coffee or having a drink
after long day of studying. I genuinely value their support and friendship, which significantly enhanced
my experience and made this journey a whole lot more fun.

Sander van Heyningen
Delft, March 2025
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Summary

High car usage in urban areas has negative effects on liveability, such as reduced air quality, increased
noise pollution, higher urban heat levels and reduced traffic safety. Additionally, cars occupy significant
urban space that could otherwise be allocated to greenery, recreational areas, or alternatively, more
space-efficient modes of transport such as walking and cycling. As cities continue to grow and densify,
addressing these challenges becomes increasingly important to ensure a healthy and sustainable urban
environment.

In response, many cities in the Netherlands aim to transition to a low-car urban environment, where
car usage is significantly reduced, though not entirely prohibited. One strategy to achieve this involves
reducing road network capacity, which not only limits space for cars but can also reduce overall car
usage in the area —a phenomenon referred to in the literature as “disappearing traffic”. However, pol-
icymakers often lack robust tools to predict the outcomes of such interventions. This study addresses
the following research question: How can changes in travel behaviour be accurately predicted following
road capacity reductions in urban areas and what insights can be drawn from these predictions?.

This research develops a model to estimate changes in travel behaviour and the resulting traffic dy-
namics following a road capacity reduction, focusing on the evening peak period. The model uses an
iterative process to establish a new equilibrium between traffic congestion and car usage. It considers
four alternatives: car, public transport, cycling and a “no trip” option, representing changes in desti-
nation, departure time or trip frequency. The iterative process consists of three steps. (1) A dynamic
traffic simulation is conducted, implementing the road capacity reduction to determine travel times for
car trips for a given traffic demand. (2) This is followed by an assessment to evaluate whether traffic
congestion has stabilised. (3) Finally, the traffic demand is recalculated based on the updated travel
times over the network. If congestion has not stabilised, the cycle repeats until equilibrium is reached,
with shifts from car use to alternatives as travel times rise.

The research also included an analysis of the effects on car usage on large-scale roadworks in Rot-
terdam South (from January 2023 to July 2024) at the Roseknoop intersection. During the phase of
highest capacity reduction, involving the closure of a major 2x2 road, evening peak traffic entering the
area decreased by 4,400 car trips (15% of total). This indicates that at least 4,400 travellers adapted
their behaviour, such as switching modes, altering departure times, changing destination out of the
intervention area or reducing trip frequency. Notably, some adaptations persisted after road capacity
was restored, suggesting lasting behavioural changes.

The model estimating the effect of road capacity interventions was calibrated using data from a macro-
scopic traffic model as well as from one of the two roadwork phases in the Roseknoop case study. In
the calibration, the model parameters of the utility functions for the alternatives are found by using the
Maximum Likelihood Estimation. Validation on the other phase of the Roseknoop roadworks demon-
strated that the model outputs aligned more closely with observed traffic conditions than scenarios
without demand reduction. Although the model performed well qualitatively, quantitative assessment
of its accuracy remains challenging.

The model revealed distinct patterns in travel behaviour changes. Short trips, including those within
cities or between nearby cities, predominantly shifted to alternative modes like cycling or public trans-
port when the travel time due to road capacity reductions increased. In contrast, longer trips showed
minimal mode shifts, with adaptations such as changing destinations, departure times or trip frequen-
cies (e.g., increased remote working) being more common.
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To conclude, the developed model demonstrates that recalculating traffic demand based on simulated
travel times can provide policymakers with valuable insights into the impacts of road capacity reductions.
Both the model and the data analysis suggest that the overall effect on congestion is limited. Although
traffic congestion does increase slightly, it is certainly not as severe as it would be if no traffic were to
leave at all. This can be attributed to the self-regulating nature of travel behaviour, where individuals
adapt their travel patterns in response to reduced road capacity. Notably, some of these adaptations
persist even after capacity is restored, suggesting that alternative behaviours—such as switching to
public transport or cycling, adjusting schedules or reducing trip frequency—may offer benefits that, for
some users, surpass the convenience of driving. While further research is needed to confirm this trend,
it underscores the potential for sustainable reductions in traffic demand, contributing to the goals of
creating low-car cities.

Furthermore, effective communication plays an important role in mitigating potential initial congestion
during road capacity reductions and should be considered in future implementations. While the effect
of communication was not explicitly analysed in this study, a lack of communication could result in
considerable traffic congestion on the first day of implementation. Providing clear and timely information
can help travellers prepare for the changes and adjust their behaviour in advance, leading to a more
gradual and manageable transition to the new traffic conditions.

In summary, road capacity reductions, when combined with well-calibrated models and strategic com-
munication, can support the transition to low-car cities with minimal disruptions while encouraging sus-
tainable travel behaviour changes.
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1
Introduction

In many cities nowadays, cars dominate the urban landscape. This car dominance began in the 1960s
when auto mobiles became more affordable for the wider public, leading to a substantial increase in car
ownership and usage. Over the following decades, this trend continued, resulting in the expansion of
the road network and the growing spatial separation between residential and commercial areas [Harms,
2003]. Also in the last decade, from 2010 to 2020, the car use increased in the Netherlands with 9
percent, which is higher than the growth of the population above the age of 18, which was 7 percent
[Zijlstra et al., 2022]. Today, 55 percent of the space on Dutch streets is allocated to car traffic and car
parking [Liere et al., 2017]. Private cars require significantly more space compared to other transport
modalities; a car driving at a speed of 50 km per hour occupies 28 times more space than a moving
bicycle, and when parked, it needs 10 times more space than a bicycle [Liere et al., 2017]. Given the
ongoing urban growth and increasing population densities, particularly in major cities in the Netherlands
[de Jong et al., 2022], this makes it even more important to address the issue of space allocation. By
rethinking urban space usage, cities can create more room for sustainable and space-efficient modes
of transport, as well as creating more greenery an recreational space in the cites.

Widespread car use also contributes to reduced traffic safety and various environmental challenges.
Higher levels of car dependency are linked to increased accident risks, whereas a shift towards cycling
has been shown to improve overall road safety when the number of car kilometres in urban areas
is reduced [Wegman et al., 2012]. The environmental challenges include air pollution and increased
noise and heat levels in urban areas [HealthEffectsInstitute, 2010] [Nieuwenhuijsen et al., 2016]. These
issues, along with the extensive use of urban space for cars, have been linked to a decline in urban
liveability. In response, many European cities are increasingly reallocating space away from cars and
encouraging reductions in car usage. This transition aligns with the broader objective of achieving
net zero carbon emissions by 2050, necessitating a move from fossil fuel-powered vehicles to more
sustainable modes of transport [Bode et al., 2019].

1.1. Context
To enhance urban liveability, many Dutch cities aim to reduce car usage and want a transition to a
low-car city [Jorritsma et al., 2023]. The term “low-car city” is not specified very accurately, but it
generally refers to cities with policies aimed at reducing car presence without entirely banning cars
from urban areas. Low car developments, which are a key feature of low-car cities, typically include
residential or mixed-use areas designed to limit car use. These developments often offer limited parking
to discourage car ownership and use by residents [Melia et al., 2011].

The Dutch Institute for Mobility Policy (KiM) has outlined various policies to implement low-car cities
[Jorritsma et al., 2023]. These policies include adjusting the urban environment, modifying parking
regulations and redesigning roads and streets. Specifically, the intervention of closing streets to car
traffic and redesign streets can reduce the urban space consumption of the car and can simultaneously
mitigate noise and air pollution by decreasing car use. KiM has studied the effects of these policies
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1.2. Research objectives and scope 2

on car ownership and usage. However, the impact of closing and redesigning streets on car use re-
mains uncertain. Closing streets can potentially lead to vehicles taking longer detours, but it may also
reduce the overall car use. This phenomenon, known as disappearing traffic [Cairns et al., 2002], is
a central aspect of this study, as it can significantly impact predictions of car use in response to road
capacity reductions. Despite its potential benefits, there is currently insufficient knowledge to accu-
rately incorporate disappearing traffic into traffic models [Vonk et al., 2024]. The term “disappearing
traffic” is interpreted differently across studies, depending on the specific elements considered. Some
studies focus on the reduction in car trips within a particular area, while others examine the overall
reduction in trips across all modes of transport. In this study, both aspects are addressed to provide a
comprehensive understanding of the phenomenon.

Current research on disappearing traffic mainly consists of independent case studies, making it difficult
to predict its occurrence due to its location-specific nature. Currently, there is not enough knowledge
about disappearing traffic to determine in which situations the overall car use decreases and to what
extent disappearing traffic occurs. Therefore, a comprehensive study is needed to understand the
effects of reducing road capacity on car use and predict the level of disappearing traffic on future road
capacity reduction scenarios.

In line with the broader trend towards low-car cities, Rotterdam is making significant efforts to reduce
car space and promote alternative modes of transport. These initiatives reflect a growing recognition
of the need to rethink urban mobility. Rotterdam is the second-largest city in the Netherlands and is a
relatively car-oriented city compared to many other Dutch cities. This focus on cars can be traced back
to the post-Second World War reconstruction, when the city was rebuilt with considerable space allo-
cated for cars [Mingardo, 2020]. Over the past decade, however, there has been increasing attention
towards reallocating car space to other modes of transport. For instance, in 2021, the Coolsingel in the
city centre was renovated, reducing the road from two lanes to one lane in each direction. This trans-
formation created additional space for cyclists and pedestrians [Gemeente Rotterdam, 2024d]. The
municipality remains committed to further reducing car space. Upcoming projects include the redevel-
opment of Hofplein, currently a major roundabout dominated by car traffic, into a pedestrian-friendly
area with increased greenery [Gemeente Rotterdam, 2024b]. Additionally, the Traffic Circulation Plan
aims to implement smaller infrastructural changes to discourage car use.

To support these initiatives, the municipality seeks to predict the impact of these road interventions.
Traditional traffic models, which assume constant traffic demand, often overestimate congestion levels.
For example, the redevelopment of the Roseknoop, located in the south of Rotterdam, resulted in less
congestion than predicted by existing traffic models. Consequently, the municipality aims to develop
a model that can simultaneously predict reductions in car trips and accurately estimate the resulting
traffic patterns.

1.2. Research objectives and scope
The primary objective of this research is to develop a predictive model that estimates the levels of
disappearing traffic based on a given capacity reduction and the current road network usage. This
model aims to provide urban planners and policymakers with a tool to better understand and anticipate
the impacts of reducing road space allocated to cars. Additionally, the research seeks to identify key
variables influencing the changing travel behaviour associated to road capacity reductions and derive
insights into the mechanisms underlying this phenomenon. The results obtained from the model will be
analysed to assist policymakers in making informed decisions about road space allocation and traffic
reduction strategies.

The predictive model is designed to estimate the levels of disappearing traffic during the evening peak
as this period represents the highest demand on the traffic network. The model will focus on the three
most utilised modes of transport: car, public transport and bicycle. It emphasises the changing modal
split resulting from increased car travel times. Additionally, an opt-out alternative, the ‘no trip’ option,
is incorporated to account for the aggregated effects of changes in destination, departure time and
trip frequency. While the model will be specifically tailored to the city of Rotterdam, the methodology
employed is transferable to other European cities.
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1.3. Research questions
In order to reach the above mentioned objectives, a research question is formed. The central research
question for this study is: How can the change in travel behaviour be accurately predicted following
road capacity reductions in urban areas, and what insights can be drawn from these predictions?.

To address this question comprehensively, several sub-research questions are formed.

1. Under what conditions does disappearing traffic occur, and what are the key drivers behind this
phenomenon?

2. What are the essential components of a predictive model for estimating disappearing traffic and
how are its components interconnected?

3. What insights do two case studies of road capacity reductions in Rotterdam provide about chang-
ing travel patterns?

4. What are the key characteristics of the calibrated predictive model?
5. How does the predictive model perform when applied to a case study in Rotterdam?
6. What insights can be drawn from the model’s application for future urban planning and traffic

management?

1.4. Thesis Outline
The structure of this report is designed to provide a logical flow, beginning with a theoretical foundation
and moving toward model development, calibration and practical application. Each chapter contributes
to the central question by addressing specific sub-research questions.

Chapter 2 presents a thorough review of the literature on disappearing traffic and changing travel be-
haviour. The chapter describes case studies about disappearing traffic and also investigates induced
demand. Based on findings in literature, the first question is answered; Under what conditions does
disappearing traffic occur, and what are the key drivers behind this phenomenon?.

In Chapter 3, the theoretical framework and approach for constructing the predictive model are pre-
sented. This chapter outlines the various steps involved, providing a conceptual explanation of each
step, and establishes the relationships between them. With this information, the following research
question is addressed: What are the essential components of a predictive model for estimating dis-
appearing traffic, and how are these components interconnected? The components of the model are
subsequently defined in a more mathematical context in Chapter 4.

Following, two phases of roadworks in the south of Rotterdam are investigated in Chapter 5. The
insights gained from these case studies provide an answer to the question What insights do two case
studies of road capacity reductions in Rotterdam provide about changing travel patterns?. Besides
answering this research question, the case studies also form a base for the calibration and validation
of the model.

Based on the outcome on one of the two case studies, Chapter 6 provides the method applied to cali-
brate the model. The resulting calibrated model answers the questionWhat are the key characteristics
of the calibrated predictive model?.

The calibrated model is than applied to another case study, which is presented in Chapter 7. This
chapter examines the effectiveness of the model in predicting disappearing traffic across case studies
in Rotterdam and answers the fifth research question How does the predictive model perform when
applied to a case study in Rotterdam?.

Finally, Chapter 8 provides the findings to the research questions. It summarizes the insights gained
from the model’s application and discussing their implications scientific research and practical implica-
tions for future traffic management and urban planning.



2
Literature review

This chapter presents the findings of the literature review on changes in travel behaviour resulting
from changes in road capacity. The focus of this review is the overall reduction in car trips, commonly
referred to as disappearing traffic. The objective of this literature review is to develop an understanding
of when and how disappearing traffic occurs. This will contribute to the formulation of the theoretical
model by identifying the key variables influencing this phenomenon.

The chapter begins with an outline of the methodology employed in the literature review in Section
2.1. This is followed by a discussion of reports that describe disappearing traffic in general in Section
2.2. Section 2.3 examines key case studies in which road capacity has been reduced. Subsequently,
changes in behaviour in response to reductions in road capacity are explored in Section 2.4. The
concept of induced demand, which represents the opposite effect of disappearing traffic, is discussed
in Section 2.5. The modelling approaches applicable to changing travel behaviour and disappearing
traffic are then outlined in Section 2.6. Finally, the chapter concludes with a summary of the key insights
from the literature review in Section 2.7.

2.1. Literature review methodology
For this research, it is essential to establish a comprehensive understanding of the state of the art on
disappearing traffic in order to address the research question: ”How can changes in travel behaviour
be accurately predicted following road capacity reductions in urban areas during the evening rush hour,
and what insights can be drawn from these predictions?”. Relevant literature on disappearing traffic
has been identified using Google Scholar, Scopus, and TRID.

The following research keywords and combinations of concepts were used in the search engines: dis-
appearing traffic, evaporating traffic, car capacity reductions, road capacity reductions AND effect on
car use, road narrowing AND effect on car use, induced demand, and induced demand AND elasticity.
In addition to keyword-based searches, the snowballing method was employed, whereby new articles
were identified through references cited in relevant reports.

2.2. Disappearing traffic in general
This section provides an overview of studies that examine disappearing traffic in general. The most
extensive study on this phenomenon was published in 1998, with a follow-up study in 2001 [Cairns
et al., 2002]. The original study analysed 70 case studies from eleven countries to investigate the oc-
currence of disappearing traffic. The follow-up study highlighted that the choices people make following
a reduction in road capacity are more complex than previously assumed. It categorised disappearing
traffic into three scenarios.

In the first scenario, road space reallocation does not necessarily lead to a reduction in capacity, as
changes in traffic management or adaptations in driving behaviour may offset the impact. Consequently,
traffic intensities remain unchanged, and no disappearing traffic is observed. In the second scenario,
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2.3. Case studies research into disappearing traffic 5

capacity is reduced, but there is sufficient spare capacity on alternative routes, maintaining overall
traffic levels across the network. In this case, disappearing traffic is also minimal. In the third scenario,
however, spare capacity on alternative routes is insufficient. Here, disappearing traffic is frequently
observed due to behavioural changes, including shifts in mode choice, destination choice, and trip
frequency. The study demonstrated that traffic levels decrease significantly following a reduction in
road capacity, resulting in minimal deterioration in traffic congestion.

In 2017, TNO, a Dutch research institute, conducted a study on disappearing traffic, comprising a liter-
ature review on Dutch examples of capacity reductions and a workshop on the topic [Vonk et al., 2024].
The study highlighted that varying definitions of disappearing traffic make it difficult to compare different
cases, and that the extent of disappearing traffic is highly dependent on local conditions. Furthermore,
many studies do not adequately consider the role of alternative modes of transport. The research con-
cluded that current knowledge on disappearing traffic is insufficient to incorporate it into traffic models
effectively, advocating for further Dutch research on the subject. It also emphasised the importance of
the measurement period, as a new equilibrium takes time to form. The study recommended that traffic
levels be assessed three to six months after a capacity reduction to ensure that a new balance has
been established.

As outlined in the introduction, the Dutch Institute for Mobility Policy (KiM) has explored various policies
for implementing low-car urban environments [Jorritsma et al., 2023]. Figure 2.1 provides an overview
of the policy measures examined and their effects on car ownership and usage. The measures cat-
egorised under roads and streets are particularly relevant to disappearing traffic. Road closures and
street redevelopment are both classified as having an unknown effect on car usage.

Effect on car ownership Effect on car usage
Built environment

Densification reduction reduction
Mixing of functions reduction reduction

Parking
Remove existing parking space unknown reduction

Strict parking norms for new construction reduction reduction
Parking permits reduction unknown

Increase parking fees reduction unknown
Remote parking unknown unknown

Roads and streets
Road closure slight reduction unknown

Car low city centre unknown unknown
30 kph streets slight reduction unknown

Redevelopment of streets slight reduction unknown

Table 2.1: Low car policies and its effect on car ownership and car use per person [Jorritsma et al., 2023] (translated from
Dutch to English)

2.3. Case studies research into disappearing traffic
There have been multiple independent studies examining the effects of road capacity reductions. The
majority of these are data-driven investigations, complemented by several revealed preference studies
on disappearing traffic. However, studies in the latter category do not appear to identify significant
impacts. A study conducted in the United Kingdom in 2021, which analysed changes in travel behaviour
following the pedestrianisation of a street in the city centre of a small town with 65,000 inhabitants, did
not find significant differences [Melia and Calvert, 2023]. Similarly, a study in Oslo, which utilised a
street-space reallocation survey, observed only minor modal shifts [Tennøy and Hagen, 2020].

Conversely, multiple data-driven studies have identified behavioural adaptations to road capacity re-
ductions. In Bristol, United Kingdom, a city with 617,000 inhabitants, the impact of closing a central
bridge—which provided the only direct north-south and east-west connection through the city centre—
for five weekdays was examined [Melia and Calvert, 2023]. The findings indicate a 6.8% reduction in
traffic in the central area and a 2.3% reduction in the outer area. Given the short duration of the closure,
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no long-term effects could be determined. This closure was well communicated to residents, enabling
them to adjust their travel behaviour and withhold some trips during this period. Another study investi-
gated the closure of the Maastunnel in Rotterdam in the southbound direction [Gemeente Rotterdam,
2018]. This research registered a 2.5% modal shift towards public transport and a 2.8% shift towards
cycling. The following sections will discuss several larger case studies.

Another study was conducted in Oslo, Norway, where the capacity of the Smestad tunnel, an outer-ring
road tunnel, was reduced from four to two lanes for nearly a year [Tennoy et al., 2020]. On the first day of
the reduction, morning rush hour traffic decreased by 37% and evening rush hour traffic by 33%, with no
significant increase in traffic on alternative routes. Due to extensive media coverage, many commuters
altered their travel mode or worked from home, leading to smooth rush-hour conditions. This was
widely reported in the press, and consequently, traffic volumes increased the following day, gradually
returning to normal levels over subsequent weeks. This suggests that the remaining capacity in the
tunnel was sufficient for daily traffic volumes. Another highway tunnel in Oslo experienced a similar lane
reduction from four to two lanes between February 2016 and April 2017. This tunnel accommodated
a larger daily volume of vehicles. During the closure, daily traffic declined by 26% to 34%. Despite
this reduction, the average speed within the tunnel decreased, indicating increased congestion. The
primary alternative route experienced an increase in traffic volumes of between 12% and 37%, while
other relevant municipal roads saw minimal changes. Overall, a reduction of 4.2% in morning rush
hour traffic and 2.2% in evening rush hour traffic was observed at selected traffic counting locations.

Nello-Deakin examined the effects of eleven road interventions in Barcelona, where traffic lanes were
reduced and replaced with bike lanes, bus lanes, or expanded sidewalks [Nello-Deakin, 2022]. All
these interventions were implemented during the COVID-19 pandemic, a period that saw increased
emphasis on active travel modes. This study compared traffic counts from the second half of 2019
(pre-intervention) with those from the second half of 2021 (post-intervention). Traffic counting locations
were categorised into four groups: intervention streets, adjacent streets (alternative routes), buffer
area streets (alternative routes within 500 metres of the intervention street), and control area streets
(control group locations more than 500 metres from the intervention). Monthly daily average traffic
levels were calculated relative to the control group stations. On average, vehicular traffic on intervention
streets declined by 14.8%. Adjacent streets experienced a minor increase of 0.7%, while buffer streets
exhibited a slight decrease of 0.5%. These findings suggest an overall reduction in vehicular trips.

Recently, a study was published on the closure of the Weesperstraat and three adjacent streets in
Amsterdam, the Netherlands [Gemeente Amsterdam, 2024]. This six-week pilot aimed to assess the
impacts on car usage, network utilisation, modal shifts, liveability, and air and noise pollution. The
research comprised 30 sub-studies, with most findings compared to data from two weeks in May 2023,
immediately preceding the pilot. Results indicate that within the pilot area, there was an 18% reduction
in unique vehicles and a 10% reduction in vehicle kilometres. Across the entire Amsterdam area, there
was a 3% reduction in unique vehicles and a 5% reduction in vehicle kilometres. The most attractive
diversion route experienced a 40% increase in traffic and an average delay of three minutes. Certain
streets saw reductions in average speed, particularly along diversion routes. Conversely, some streets
recorded increased average speeds, likely due to lower traffic volumes. No significant change was
observed in public transport usage, possibly due to the limited duration of the pilot.

In 2003, the city of Seoul, South Korea, demolished an elevated highway running through the city
centre and restored the Cheonggyecheon stream. The number of traffic lanes was reduced from four
to two in each direction. A study was conducted to analyse changes in travel behaviour and identify
lessons learned from this intervention [Chung et al., 2012]. Prior to the restoration, concerns were
raised about potential congestion; however, residents adapted by altering their route, departure time,
or travel mode—a phenomenon referred to in the study as self-compliance. Traffic data indicated an
increase in subway ridership and a decline in car usage. Initially, the average travel speed on alterna-
tive routes deteriorated but eventually returned to previous levels. The study states: “Self-compliance
caused the system to revert back to its former condition, although this is unlikely to hold true for all
urban restoration projects.” This latter point emphasises that specific conditions must be met to pre-
vent increased congestion. These conditions include careful planning and the availability of sufficient
alternatives, such as alternative routes and high-quality public transport.
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Figure 2.1: Cheonggyecheon stream restoration project

Figure 2.2: Self-compliance in response to road capacity
reduction

2.4. Behavioural adaptation in response to road capacity reductions
This section examines research into the behavioural changes of travellers following a reduction in road
capacity. In 2024, Amsterdam Bereikbaar conducted a study on the potential behavioural adaptations
in response to future roadworks around Amsterdam [Claassen et al., 2024]. Although this study pri-
marily focuses on temporary road capacity reductions, it provides valuable insights into the types of
behavioural changes that may occur and the conditions under which they are likely to take place. The
overall methodology of this research consisted of four stages. First, for each road construction project,
the effects on route choice and network load were analysed, leading to an estimation of the expected
additional travel time. Second, the origins and destinations of affected trips were examined. Third,
based on the preceding analyses, the potential for behavioural change was assessed.

The study concludes that this potential is highly dependent on both the number of affected travellers
and the extent of travel time loss. Amarginal increase in travel time due to roadworks is unlikely to make
alternative modes, such as cycling or public transport, significantly more attractive. Consequently, the
greater the number of affected travellers and the longer the additional travel time, the higher the likeli-
hood of behavioural adaptation. However, these are not the only determining factors. Other influential
factors include the level of car dependency, trip purpose, personal financial constraints, the presence
of fellow travellers, freight transport requirements, and occupations that necessitate car or freight vehi-
cle use. The study also highlights that for origin–destination pairs where high-quality public transport
or cycling infrastructure already exists, those who still choose to drive are more likely to be highly car-
dependent or have no viable alternative. As a result, achieving substantial behavioural change in such
cases is more challenging.

For each alternative mode, the study identifies the conditions under which it is likely to have a high
potential for uptake. The (electric) bicycle is considered an attractive alternative when a significant
proportion of origins and destinations are within a 15-kilometre range. The viability of buses, trams,
and metro services depends on the location of the roadworks and the spatial relationship between
origins, destinations, and public transport routes. These modes are most appealing for short-distance
trips within the city and for travel from surrounding areas towards central locations. The train presents a
feasible alternative when both the origin and destination are near railway stations and the total journey
time is comparable to that of driving. Park and Ride (P+R) facilities are suitable for travellers originating
outside the city and heading towards the city centre, provided these facilities are conveniently located
before the roadworks. In addition to mode shifts, some travellers may opt to adjust their departure
times to avoid peak-hour congestion.
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2.5. Insights from capacity expansion: understanding induced de-
mand

This research focuses on behavioural changes following a reduction in capacity. However, there is
extensive research on the opposite intervention: increasing capacity. It is crucial to understand the
outcomes of capacity enhancement, as these findings can subsequently be translated to interventions
involving capacity reductions.

”Traffic engineering theory is straightforward: a street is congested because the number of drivers
exceeds its capacity. If you enlarge the street, you will eliminate congestion. Unfortunately,
seventy-five years of evidence tells us that this almost never happens.” [Speck, 2018].

The reason congestion does not diminish is that the widened road will only experience a brief reduction
in travel time immediately after the highway opens. As time progresses, the road that has been relieved
of congestion attracts individuals who previously wished to use that route but were deterred by the
existing congestion. This phenomenon is referred to as latent demand [Clifton and Moura, 2017]. A
framework illustrating latent demand is presented in Figure 2.3.

Figure 2.3: Framework latent demand [Clifton and Moura, 2017]

Latent demand is driven by individuals that choose another departure time, mode or stay home in order
to not get stuck in traffic [Speck, 2018]. If capacity is increased, individuals and businesses could even
move further from the city, following the vicious circle of congestion (see Figure 2.4). This phenomenon
is called induced demand and is the opposite of disappearing traffic.

Figure 2.4: Vicious circle of congestion [Rodrigue, 2024]
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The subsections below outline key aspects of road expansion and the resulting induced demand. Firstly,
the type and order of increase in travellers is addressed in Subsection 2.5.1. Secondly, induced demand
is analysed from an economic perspective in Subsection 2.5.2. Subsection 2.5.3 discusses potential
methods for incorporating induced demand into traffic models. Finally, Subsection 2.5.4 will examine
the aspects of induced demand that are relevant to the concept of disappearing traffic.

2.5.1. Generated traffic
The increase in travellers on the road will result in congestion that is, more or less, equivalent to that
experienced previously; it returns to the former congestion equilibrium during peak hours. This increase
in travellers is referred to as generated traffic. Generated traffic comprises diverted travel and induced
travel [Litman, 2017]. Diverted travel represents the shift from other routes and times to the peak
hour period of the widened road, while induced travel signifies an overall increase in vehicle usage.
Induced travel is partially driven by the law of conservation of travel time andmovement, which suggests
that individuals maintain a constant daily average travel time of approximately 70 minutes [Ahmed
and Stopher, 2014]. Consequently, reductions in congestion will stimulate greater mobility rather than
saving travel time. Litman has researched the most significant types of generated traffic, as illustrated
in Figure 2.2. He categorises generated traffic into four types: diverted trips (a shift in time or route),
induced vehicle trips (trips that were already made but using a different mode than the car), longer trips
(where the vehicular trip length has increased), and induced trips (where trip frequency increases). For
each type, it is assessed whether the change is short-term or long-term and what the implications for
travel and costs are.

Type of generated traf-
fic Explanation Category Time frame

Shorter route Improved road allows drivers to use more direct route Diverted trip Short term
Longer route Improved road attracts traffic from more direct routes Diverted trip Short term

Time change Reduced peak period congestion reduces the need to defer trips
to off-peak periods Diverted trip Short term

Mode shift (existing
travel choices)

Improved traffic flow makes driving relatively more attractive than
other modes

Induced ve-
hicle trip Short term

Mode shift (changes in
travel choices)

Less demand leads to reduced rail and bus service, less suitable
conditions for walking and cycling and more automobile owner-
ship

Induced ve-
hicle trip Long term

Destination change
(existing land use)

Reduced travel costs allow drivers to choose farther destinations.
No change in land use patterns Longer trip Short term

Destination change
(land use changes)

Improved access allows land use changes, especially urban
fringe development Longer trip Long term

New trip (no land use
changes)

Improved travel time allows driving to substitute for non-travel ac-
tivities induced trip Short term

Automobile dependency Synergetic effects of increased automobile oriented land use and
transportation system Induced trip Long term

Table 2.2: Generated traffic overview [Litman, 2017] (table adapted)

Since the short term and long term in Figure 2.2 can vary in time period, Litman defined four orders or
capacity expansions. This is shown in Table 2.3.

Order Definition
First Reduced congestion delay, increased traffic speeds
Second Changes in time, route, destination and mode
Third Land use changes. More dispersed, automobile-oriented development

Fourth
Overall increase in automobile dependency. Degraded walking and cycling
conditions, reduced public transit service and social stigma associated with
alternative modes

Table 2.3: Four different orders in capacity expansions [Litman, 2017]

Another aspect which is often research with respect to induced demand is the elasticity of the additional
traffic compared to the road capacity. The elasticity is the ratio between the generated traffic and the
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new added capacity. A elasticity of 0 indicates no generated traffic after a capacity increase and an
elasticity of 1 means that the new capacity is 100 percent filled with new road users. In Figure 2.5, the
traffic growth after several years after completion of the project is shown for different levels of latent
demand based on a literature study.

Figure 2.5: Elasticity of traffic volume with respect to road capacity [Litman, 2017]

Table 2.4 shows the results of a literature research to induced demand from Rodier et al. [2001] split
out for short-term and long-term.

Author Short-term Long-term (3+ years)
SACTRA 0.5-1
Goodwin 0.28 0.57
Johnson and Ceerla 0.6-0.9
Hansen and Huang 0.9
Fulton et al. 0.1-0.4 0.5-0.8
Marshall 0.76-0.85
Noland 0.2-0.5 0.7-0.1

Table 2.4: Elasticity levels from different scientific research [Litman, 2017]

Table 2.4 and Figure 2.5 show a wide range in induced traffic levels. This corresponds to the results of
the literature review of case studies of Dunkerley et al. [2018]. This study confirms that induced traffic
exists and may be significant in some situations. The probability of occurrence is the highest in urban
areas and on highly congested routes. When applied to the national highway network, the impact is
often smaller.
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2.5.2. Induced demand from economical perspective
Considering induced demand from an economic perspective, it can be defined as a movement along
the travel demand curve. Here, the price axis encompasses not only monetary costs but also travel time
and other user costs, while the horizontal axis represents traffic volume [Lee et al., 1999]. The fact that
an expanded highway attracts additional travellers indicates that the demand for travel is elastic. Lee
et al. (1999) divide this travel demand into two components. Exogenous factors—those not influenced
by infrastructure, such as population growth, employment rate, availability of alternative modes, land
use and income patterns—determine the location of the demand curve. Endogenous factors, such as
travel time and travel costs, determine the specific point along the demand curve. Since changes in
road capacity affect travel time, such interventions also influence the position on the demand curve.
Short-run elasticity is generally lower than long-run elasticity, as travel demand becomes more flexible
over time due to factors such as potential traffic growth.

Figure 2.6 illustrates the distinction between diverted trips and induced trips from an economic perspec-
tive. The general equilibrium demand curve accounts only for car trips, whereas the partial equilibrium
demand curve includes all travellers in the market, such as those currently opting for alternative modes,
different routes or departure times or those who choose not to travel due to congestion. The general
equilibrium demand curve exhibits greater elasticity, as it offers a wider range of alternative options,
resulting in increased flexibility. In the scenario presented in the figure, an increase in capacity leads
to a reduction in the generalised cost of travel, from p0 to p1. This, in turn, results in an increase in
both partially new trips (induced travel) and diverted trips (diverted travel). Another factor influencing
elasticity is whether the curve represents demand over a full day or only during peak periods. If only
peak periods are considered, elasticity increases, as individuals have more choices available. The
figure also demonstrates that when capacity is increased, consumer surplus rises, as the overall cost
of car travel decreases, benefiting existing drivers and attracting new users.

Figure 2.6: Partial and general equilibrium demand curves [Lee et al., 1999]

2.5.3. Modelling implementations induced demand
To gain deeper insights into induced demand, generated traffic should be incorporated into traffic mod-
els. These models should include a feedback loop in which congestion influences travel behaviour
and long-term land use changes [Litman, 2017]. While most traffic models account for route and mode
shifts, they often fail to consider trip frequency and the broader shift towards a more car-dependent so-
ciety. As a result, long-term traffic volumes are currently underestimated due to the omission of induced
vehicle travel. This has significant implications for cost-benefit analyses of road expansion projects, as
the anticipated travel time savings are smaller than expected, while the environmental impact is greater
than initially projected.
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2.5.4. What can be learned from induced demand?
Understanding induced demand can significantly contribute to the development of the model for this
research, as induced demand has been studied more extensively than disappearing traffic. Both terms
are its opposites, however, the underlyingmechanisms of both phenomena are fundamentally the same.
When road capacity is expanded, the friction associated with driving is reduced, leading to an increase
in vehicle numbers. Conversely, when capacity is reduced, friction increases.

Induced demand demonstrates that traffic is flexible and adapts to the available road capacity. A similar
process is likely to occur when capacity is reduced; disappearing traffic may partially arise from indi-
viduals maintaining the same origin and destination but altering their mode of transport or departure
time. Additionally, some individuals may reduce their overall travel. Adaptations to induced demand
typically take between five and ten years. However, identifying the adaptation period for disappearing
traffic is more challenging. It is possible that adjustments to disappearing traffic occur more rapidly,
as travellers are confronted with increased travel times. In contrast, for induced demand, the process
operates in the opposite direction.

2.6. Modelling disappearing traffic
As outlined in several studies above, disappearing traffic arises from the increased friction associated
with car use. A reduction in road capacity leads to less available ‘space’ for vehicles, resulting in a
decline in the efficiency of the car-based mobility system. For users, this translates into increased
travel times.

When modelling disappearing traffic, at least two key aspects must be considered. The first is the
additional travel time caused by a given reduction in capacity. The second is the calculation of a new
mobility distribution, which encompasses alternative modes of transport as well as the option of not
making the trip anymore. Methods to examine the increase in additional travel time and the methods
for recalculating the mobility distribution are shown in Subsection 2.6.1 and 2.6.2.

2.6.1. Increase in travel time over network
The most common option for computing an increase in travel time due to a change in the infrastruc-
ture network is using a traffic model. The increase in travel time can be calculated based on a given
network assignment. The most common traffic models are macroscopic models and microscopic mod-
els. Macroscopic models uses aggregated traffic flow characteristics, comparable as how fluids flow,
whereas microscopic models simulate each individual vehicle [Calvert et al., 2016].

Literature shows that modelling of congestion is important when considering disappearing traffic. Con-
gestion can be modelled best by microscopic level, since these models capture behaviour of lane
changes and headways better than macroscopic models [Ferrara et al., 2018]. Also, the trip individual
information, like travel time per trip, is important information to compare different situations. Therefore,
the best method to determine the increase of travel time on a individual level is by using a microscopic
traffic model.

2.6.2. Mobility distribution
The second aspect of modelling disappearing traffic involves recalculating a new mobility distribution.
Based on the additional travel time, users may opt for an alternative mode of transport or decide not to
undertake the trip at all.

Modal split
In transport modelling, the logit model is frequently employed to determine the modal split [Cingel et al.,
2019]. This model is grounded in the principle of Random Utility Maximisation, whereby decision-
makers evaluate the utility associated with each available alternative i generating a set of utilities
U1, U2, ..., Uj . The total utility comprises an observable component Vi and an unobservable compo-
nent εi. When εi is assumed to follow an Extreme Value Type I distribution, the modal split can be
derived using the Multinomial Logit model, as expressed in Equation 2.1.
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Pi = Prob(Vi + εi > Vj + εj , ∀j ̸= i) =
eVi∑
j e

Vj
(2.1)

Modelling no travel alternative
The literature presents various approaches to modelling the alternative of staying at home instead
of travelling. In particular, following the COVID-19 pandemic, there has been increased interest in
incorporating the ‘no travel’ alternative into traffic models. Research conducted by TNO explored the
possibilities of integrating this option and identified several methods (see Figure 2.7). Their findings
suggest two principal approaches to including the ‘no travel’ alternative in traffic models. The first
involves externally adjusting trip frequency prior to running the model (see Option 1), while the second
integrates the ‘no trip’ alternative within the model itself—either at the distribution, modal split, or time-
of-day stage (see Options 2, 3, and 4).

Figure 2.7: Possibilities of incorporating the no travel alternative in traffic models [Snelder and van der Tuin, 2023]

When modelling disappearing traffic, the additional travel time per Origin Destination pair (OD pair) is
a crucial factor in determining the extent of disappearing traffic. Consequently, incorporating the ‘no
trip’ alternative within the traffic model is the most suitable approach. Hensher et al. [2023] examined
the effects of integrating a work-from-home factor into traffic models and identified a significant impact.
Their study analysed the influence of socio-economic variables, day of the week, spatial location effects,
and modal attributes on the utility of working from home.

2.7. Conclusions from literature
This section summarises the findings of the literature review, discussing the conditions under which
disappearing traffic occurs and the key factors influencing its extent. Table 2.5 provides an overview of
the most relevant studies on disappearing traffic.

Disappearing traffic may occur following a reduction in road capacity; however, this is not always the
case. Based on the literature review, several conditions must be met for disappearing traffic to ma-
terialise. If any of these conditions are not fulfilled, the number of daily vehicular trips will remain
unchanged:

1. A road space reallocation must lead to a capacity reduction; road space reallocation might not
always lead to a reduction in maximum throughput.

2. The original maximum intensity should be lower than the new set capacity
3. The realistic and plausible alternative routes lack sufficient capacity to accommodate the excess

volume of cars
4. The difference between the maximum intensity and the new set capacity should be large enough

so that a shift of departure time (between peak and non-peak hours) is not sufficient to not let the
congestion increase
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The primary driver of disappearing traffic is the increase in congestion following a capacity reduction.
When road space for cars is reduced, congestion rises if the number of car users remains constant.
This leads to increased travel times, introducing additional friction for car travel. In response, individuals
seek to minimise this friction by altering their travel behaviour. They may choose to change their route,
departure time, mode of transport, or destination, reduce their travel frequency, or decide not to travel
at all. Disappearing traffic mainly results from decisions made by individuals who derive relatively
low added value from car travel. For these travellers, the inconvenience of congestion outweighs the
benefits of driving, making alternative modes of transport, such as public transport, a more attractive
option.

When individuals adjust their travel behaviour and reduce car trips, congestion on the affected road
decreases, which in turn leads to a reduction in travel time. This process is iterative: congestion levels
influence the number of travellers, and the number of travellers influences congestion. Over time,
a new equilibrium is reached. The literature review also identifies key factors influencing the extent
of vehicular trip reductions. These include number of hindered car travellers, additional travel time,
accessibility by alternative modes, level of car enthusiast travellers, number of travellers forced to car,
travel motive, rest capacity (on other roads) and rest capacity outside rush hour.

Author Year Title Type of research Main conclusions
Cairns,
Atkins,
Goodwin

2002 Disappearing traffic:
the story so far

Literature tomultiple
case studies

An average reduction of 11% of overall traffic can
be seen when capacity is reduced, but this is
highly dependent on local environment

Vonk, Talen,
Peirik

2017 Redevelopment
projects and disap-
pearing traffic

Literature study and
expert interviews

Currently, the focus is on studying the effect on
car use, but other modalities are studied less.
Current knowledge about disappearing traffic is
not sufficient to adapt traffic models to it.

Tennoy, Ha-
gen

2020 Reallocation of road
and street space in
Oslo: measures for
zero growth in urban
traffic

Revealed prefer-
ence study on case
study

Only minor modal changes are found.

Tennoy, Ha-
gen

2020 Effects and conse-
quences of capac-
ity reduction in the
Smestad tunnel.

Data analysis on
case study

One tunnel which was closed had enough capac-
ity for the original number of daily vehicles. Af-
ter reduction on first day, traffic grew fast back to
original state. Another tunnel with a higher daily
number of vehicles which reduced capacity lead
to a drop of 2.2 to 4.2 percent in car use andmore
congestion on the closed-off road.

Faber,
Jorritsma,
Arendsen

2023 Autoluw beleid
gemeenten: doelen,
effecten en rollen

Literature tomultiple
case studies

The effect of closing and redesigning streets on
car use is unknown, since it can also cause ve-
hicles driving more distance due to the closed or
narrowed road.

Nello-
Deakin

2022 Traffic Evapora-
tion Findings from
tactical urbanism
interventions in
Barcelona

Data analysis on
case study

Study to eleven road interventions in Barcelona
where car roads were turned into bike lanes, bus
lanes or side walks. On average a 14.8% reduc-
tion of car trips on intervention streets and only a
minor increase on adjacent roads. Difficult point
of this study is that it happened during Covid,
which might influence results. Besides this, due
to new bike lanes, not exclusively the effect of re-
ducing road capacity could be investigated.

Melia,
Calvert

2023 Does traffic really
disappear when
roads are closed?

Data analysis and
revealed preference
study on case study

Two studies, one to a pedestrianized street in a
small town. This led to no significant reduction in
car trips. Other study was to a closing of a bridge
in the city center in a city of 617k inhabitants. This
led to 6.8% traffic levels reduction in the central
area and a 2.3% reduction in the outer area. But
no long-term effects can be investigated, since
the closure was only 5 weekdays.

Municipality
of Amster-
dam

2024 Research report –
pilot block Weesper-
straat

Data analysis on
case study

Effects on closing a busy street in the city cen-
tre of Amsterdam of six weeks. There was a re-
duction of 18% unique vehicles in the pilot area.
Overall, a reduction of 3% unique vehicles could
be observed.

Table 2.5: Overview of studies on disappearing traffic and their main conclusions.



3
Methodology

In this chapter, the methodology for the predictive model will be elaborated in detail. One of the key
findings from the literature study is that the increased congestion, and the associated additional travel
time, following a capacity reduction is the primary driver behind the decrease in car trips. Immediately
after a road capacity reduction is introduced, an adaptation period is initiated. During this period, a
portion of car users adjust their behaviour to mitigate the additional travel time. These individuals may
alter their route, mode of transport, trip frequency or destination.

Congestion levels have a reciprocal relationship with the number of car trips: increased congestion
typically leads to a decrease in car trips, while a reduction in car trips can alleviate congestion. Conse-
quently, both aspects are unstable during the adaptation period. Over time, however, these variables
stabilise as individuals stick to their adjusted behaviours and stop reacting to further changes in con-
gestion. Once this stabilisation occurs, a new equilibrium is reached in both car usage and congestion.
At this point, congestion levels often resemble those observed prior to the capacity reduction.

To simulate this process, the model consists of an iterative cycle of traffic assignment and recalculation
of the mobility distribution. This new mobility distribution includes modal alternatives as well as a ‘no
trip’ option, which takes into account alternative changes in travel behaviour, like changing destination,
avoiding rush hour or staying home. The new mobility distribution provides feedback to the Origin-
Destination (OD) matrix for car trips within the traffic assignment model. The theoretical framework is
presented in Figure 3.1. The model comprises three iterative steps, explained below.

1. The first step of the model involves a traffic simulation. Based on the original OD matrix and a
specified capacity reduction, travel times for each OD pair within the network are computed using
a dynamic microscopic traffic model. The output of this step is an updated OD travel time matrix.
This step is explained in detail in Section 3.1.1.

2. Based on the outcome of the simulations, travel times distributions of selected OD pairs are
compared with a Kolmogrov-Smirnov test to see if an equilibrium has reached (see Section 3.1.2).
If the travel time has stabilised, the iteration will stop. If not, the iterative process will continue.

3. Based on the updated travel time matrix for cars, the utility for car trips is recalculated for each
OD pair in the model. Travel time matrices for cars, bicycles and public transport are retrieved
from the V-MRDH model. Based on the travel times and travel distance, the utility of each OD
pair for car, bike, public transport and choosing the ‘no trip’ option is calculated. Based on the
updated utility for car trips, a logit model is applied to predict the new mobility distribution. The
resulting mobility distribution produces an updated OD matrix for car trips which is the input of
the new traffic simulation in step 1. This step is further explained in Section 3.1.3.

The parameters of the utility functions are estimated in the model calibration, further explained in Sec-
tion 3.2. After that, the calibrated model is validated. The validation method is explained in Section
3.3.

15
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Since three different traffic relatedmodels arementioned in thismethodology and the following chapters,
this will be clarified by giving a name to the resulting model of this study, which estimates the level
of disappearing traffic given a road capacity reduction. This model is called the DiTra model; the
Disappearing Traffic model. This is to distinct it from the RODY (Rotterdam Dynamisch) model, which
is the dynamic traffic simulation of the municipality of Rotterdam, and the V-MRDH model, which is the
static transport and traffic model of the metropolitan area of Rotterdam and The Hague. The python
code of the DiTra model is given in Appendix A.

Figure 3.1: Framework of model to predict the new equilibrium in mobility distribution after a capacity reduction.

3.1. Model iteration process
The model consists of a three step iterative process. The three steps are elaborated in more detail
below.

3.1.1. Step 1: Traffic simulation
The first step in the process of the DiTra model is to determine the travel time for car trips over the
network with the capacity reduction based on a given traffic demand. The network assignment, which
represents one evening peak, determines the travel times based on the car usage. This simulation
reflects how individuals get ‘informed’ about the conditions on the road of one evening peak hour. Based
on the updated travel times, individuals canmake a decision whether or not they change their behaviour.
The overview of this section is displayed in Table 3.1.

In the initial iteration, the original OD matrix from before the capacity reduction is used. The input is
implemented in the dynamic microscopic traffic model of Rotterdam, known as Rotterdam Dynamisch
(RODY). RODY is developed in the Paramics Discovery software and simulates car traffic in the city of
Rotterdam. This model is capable of providing more detailed insights into congestion than a static traffic
model. It is constructed using data from the static regional traffic and transportation model Metropool-
regio Rotterdam Den Haag (V-MRDH), covering the area of the metropolitan region of Rotterdam and
The Hague in detail, and the rest of the Netherlands in reducing detail when the distance increases.
RODY covers the area within the rectangular highway shape around Rotterdam, including adjacent
neighbourhoods. The model incorporates 371 zones which is an aggregation of the 1381 zones of
Rotterdam in the V-MRDH model [de Jong, 2021]. Based on the simulation run, the average travel
time for each OD pair can be found based on the traffic conditions. This is the output of the simulation.
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Model aspect Description
Input • Capacity change on intervening road

• OD matrix for car trips
Modelling Traffic assignment with a microscopic traffic model
Output • The updated OD travel time matrix

Table 3.1: Model aspects calculating travel times for car trips

3.1.2. Step 2: Check for stabilised traffic
In this step, it is assessed whether traffic has stabilised or if a new iteration is required. If a significant
number of individuals alter their behaviour based on the updated travel times, this leads to a different
traffic situation, indicating that a new equilibrium in car usage and congestion has not yet been reached.
Conversely, if only a small proportion of individuals modify their behaviour, the traffic conditions will be
comparable to those of the previous simulation, allowing the iteration process to cease. The stabil-
isation of traffic is evaluated based on the travel time output of the affected OD pairs in the RODY
simulation.

Based on a selected link analysis in the baseline run of the original Rotterdam model, the OD pairs
affected by the road capacity intervention are identified. A distinction is made between directly affected
OD pairs (first order) and indirectly affected OD pairs (second order). The directly affected OD pairs
originally use the road subject to intervention. The indirectly affected OD pairs consist of those that
utilise alternative routes to the intervened road. Drivers on these alternative routes may experience
additional travel time if traffic diverts from the intervened road.

Distinguishing between directly and indirectly affected OD pairs provides valuable insights, as the
change in travel time differs between them. If the intervened road fully restricts car traffic, the travel
time for directly affected OD pairs will inevitably increase due to the need to take an alternative route,
resulting in a longer travel distance. In contrast, the indirectly affected OD pairs do not need to change
their route unless travel time increases significantly. Therefore, in a stabilised traffic situation, the in-
crease in travel time for indirectly affected OD pairs should be closer to the travel times baseline run
compared to the directly affected OD pairs.

To quantify the changes in travel time over the network, the travel times of the vehicles of the (in)directly
affected OD pairs are compared across iterations using an empirical Cumulative Distribution Function
(CDF). The equation for the CDF is presented in Equation 3.1 [Dekking et al., 2005]. In this context,
this means that for a travel time x the value Fn indicates the section of OD pairs that has a travel time
less than or equal to x.

Fn(x) =
number of OD pairs ≤ x

total number of OD pairs
(3.1)

An example of CDF outputs of different runs is given in Figure 3.2.
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Figure 3.2: Example of CDF of travel times for the base scenario and multiple iterations for directly and indirectly affected OD
pairs

To assess whether a new equilibrium has been reached, the iterations are compared by using the
Kolmogrov-Smirnov test (KS-test). The KS-test calculates the maximum vertical distance between two
samples of a CDF. This test is selected because it can identify differences in both location and shape
of the CDF [Walpole et al., 2011]. When the KS value between iterations is smaller than the threshold
value, the iteration terminates. The threshold value is determined in Section 4.1.

3.1.3. Step 3: Recalculation traffic demand
The third step of the iteration involves recalculating the the Origin-Destination (OD) matrix. Reaching
this step in the simulation indicates that the travel time of car trips between the last two iterations differ
significantly, suggesting that traffic has not yet reached a new equilibrium. This means that the last
traffic simulation gives a new traffic situation to the individuals, and a portion of the individuals are
going to change their behaviour based on this new traffic situation. This step calculates an updated
number of individuals that adapt their travel behaviour, resulting in an altered car usage.

The RODY model only models the traffic around Rotterdam. However, Rotterdam experiences exten-
sive interaction with its surrounding cities. In the RODY model, this is reflected in the high volume of
external trips entering and exiting the network. To conduct an effective model split recalculation, it is
crucial to account for the original origin or destination of external trips. For instance, an external trip
from the countryside to Rotterdam is less likely to shift to public transport than a car trip originating
near a train station. Coupling external highway zones to specific links in the cycling or public transport
network would introduce ambiguity, as this disregards information about the remainder of the trip. To
address this, the original origin and destination of external trips, derived from the OD matrix of the V-
MRDH model, are utilised. This process expands the original RODY OD matrix from 371 x 371 zones
to a matrix of 6101 x 6101 zones. This is further elaborated in Subsection 4.5.

The recalculation of the matrix is divided into two parts. Firstly, based on updated car travel times,
the utility for the alternatives car and no trip is recalculated for each affected OD pair. The utility for
public transport and bicycle trips is assumed to stay constant. Subsequently, the new distribution of
alternatives - car, public transport, cycling and the no trip - is determined. The OD matrix for car trips is
then updated in line with the revised mobility distribution. A comprehensive specification of the model
is provided in Chapter 4. An overview of this section is presented in Table 3.2.
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Model aspect Description

Input • Original travel characteristics of car, bicycle and public transport per
OD relation (from V-MRDH model)
• Travel times car per OD relation from traffic simulation
• Utility functions with its parameters (see Chapter 4)

Modelling Recalculating utility of car matrix, and applying logit model for new mo-
bility distribution

Output • New mobility distribution
• Updated OD matrix car trips

Table 3.2: Model aspects calculating utility per mode per OD relation

3.2. Model calibration
This section will describe the methodology of the calibration of the model. The model calibration is
implemented in Chapter 6. The utility functions in step three of the iterative process require a specified
form and a corresponding set of parameters. These parameters will be identified through the calibra-
tion of the model. As outlined, the model incorporates four alternatives: car, public transport, bicycle,
and a no trip alternative. The calibration will utilise two types of data. The first data source is model
data derived from the V-MRDH model, including travel times of the three modal alternatives, car travel
distance for a set of origin-destination (OD) pairs, and their corresponding modal split. The second
data source comprises findings from the analysis of changing car travel patterns following the Rose-
knoop roadworks in the south of Rotterdam. This data includes the reduction in the number of vehicles
entering the Roseknoop area during one evening peak, disaggregated by distance category. Given the
lack of data on the increase in alternative modes, the calibration will consist of three steps, producing
an initial model and a final model.

First, an initial model will be constructed, incorporating the alternatives of car, public transport and
bicycle. Using the V-MRDH data on travel characteristics and modal split, the parameters of the utility
functions will be calculated through Maximum Likelihood Estimation. This initial model will be applied
to the calibration case study, calculating the modal shift from car trips to cycling and public transport
trips for all OD pairs in the model.

The second step involves comparing the output of this initial DiTra model with the observed changes
in trips derived from the data analysis. The data analysis observes the road capacity reduction at the
Roseknoop in the south of Rotterdam (introduced further in Chapter 5). The data analysis consists of
two parts. The first part aims to determine the number of car trips entering the Roseknoop influence
area before and during the roadworks using traffic light data. The influence area is the area containing
the Roseknoop itself and plausible alternative routes to avoid the Roseknoop. To account for season-
ality, the change in traffic volume in the Roseknoop area will be compared with the course of traffic
volumes at reference locations just outside of the city. The second part involves comparing the shares
of trip lengths entering the influence area using data from TomTom Move. These data sources will be
combined to identify the trip length distribution of vehicles entering the influence area. By comparing
the period before the intervention with several months after the start of the roadwork phase, the ab-
solute reduction in car trips per distance category will be established. This observed reduction in car
trips will be compared to the calculated increase in bicycle and public transport trips generated by the
initial DiTra model. The gap between the initial model’s calculation and the observed reduction in car
trips indicates that this segment of trips has left the influence area in the evening rush hour and did not
change their mode. This implies that these individuals must have adapted their destination, departure
time or trip frequency. Therefore, the gap between the initial model’s calculation and the observed
reduction in car trips represents the segment of trips opting for the no trip alternative. This results in a
distribution of car trips per distance category that choose the no trip alternative.

Based on the information regarding the number of individuals opting for the no trip alternative across
distance categories, the parameters of the final DiTra model will be estimated in step three of the
calibration. This process involves taking the number of car trips per distance category that choose the
no trip alternative, as determined in the previous step, and distributing these values across the OD
pairs within each respective distance category. The resulting distribution is then used to calculate the
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probability of choosing the no trip alternative for each OD pair. The Maximum Likelihood Estimation
will be used to find the model parameters. Several forms of utility functions for the no trip alternative
will be developed, and the best-performing form will be selected based on model fit.

3.3. Model validation
The model will be qualitatively validated. The reason for qualitative validation is that the validation
case study is too small for any observable reduction in car trips due to the stochastic nature of traffic.
Consequently, validation will be conducted by comparing the traffic conditions over the network as
outcome of the RODY simulations with the observed traffic situation derived from TomTom Move data.
Based on visual interpretation, the intensity and locations of traffic congestion will be compared. The
model validation is performed in Chapter 7.



4
Model specification

This chapter provides a detailed specification of the model. Several aspects of the steps of the iterative
process, explained in Chapter 3, are further elaborated. In Figure 4.1, an overview is provided, based
on the theoretical framework, of the topics elaborated upon in this chapter.

Figure 4.1: Theoretical framework with highlighted elements discussed in this chapter.

After a traffic simulation is performed, the cumulative distribution functions of travel times in the area
are compared by the Kolmogorov-Smirnov (KS) test in step two of the process. The KS test outputs the
maximum vertical distance between two CDFs. If this vertical separation is small, the traffic conditions
have stabilised. Section 4.1 elaborates the threshold KS value. If the traffic conditions do not have
stabilised, the traffic demand is recalculated. As discussed earlier, recalculating the OD matrix entails
revising the utility values, based on updated travel times from the simulation. This is followed by the
estimation of the new mobility distribution. The utility functions are presented in Section 4.2, and the
calculation of the mobility distribution is further elaborated in Section 4.3. Section 4.4 describes the
method applied to increase the convergence speed of the model. In Section 4.5, the external parts of
the trips outside the RODY network are elaborated.

21
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Section 4.6 and 4.7 describe optional features of the model, which are required in certain situations of
road capacity reductions. The first feature is reducing the car traffic demand for initial iteration which
can be applied when the effect of large road capacity interventions are going to be estimated. The
second optional feature is adjusting the travel time matrix for the alternative modes if changes in these
network occur simultaneously with the road capacity reduction.

4.1. Threshold value for congestion indicator
For the second step of the iteration process, a threshold Kolmogorov-Smirnov value must be estab-
lished when the iteration should stop. If the KS value between two successive iterations falls below
this threshold, it indicates that a new equilibrium has been reached, prompting the termination of the
iterative process. This threshold is derived by assessing the variability observed across multiple par-
allel runs of the same scenario, alongside an evaluation of the convergence speed. As explained in
Section 3.1.1, the model is performed with six parallel runs. The KS value between the ‘average’ run
and each individual run is calculated, resulting in a standard deviation of σ = 0.0084 for the directly
affected OD pairs. Consequently, the maximum KS value for terminating the iterative process must
exceed the standard deviation of a single simulation.

The threshold must strike a balance between model accuracy and computational efficiency. Given that
each iteration requires approximately 4.5 hours to complete, computational efficiency is of consider-
able importance. Setting the threshold equal to the standard deviation would prolong the simulation
unnecessarily. Based on an experiment with the model, in which multiple iterations were performed
and the model’s convergence was analysed, the threshold was set at KSthreshold = 3σ = 0.0252. This
convergence analysis is further elaborated in Appendix B.

4.2. Utility functions
In the third step of the iteration process, the utility for car trips is calculated based on travel times
for each OD pair. The utility is derived by mutiplying attribute levels - such as travel time - by the
corresponding β-coefficients, which reflect the marginal utility of each attribute. The component of the
utility that is not explained by these attributes is represented by the Alternative Specific Constant (ASC).
The β-coefficients and ASCs are estimated by the model output of the V-MRDH model and through a
case study that serves as the basis for model calibration, as elaborated in Chapter 6. These estimated
parameters are subsequently used to compute the utility for each OD pair.

To incorporate the external parts of the car trips, i.e. the part of the trip which is performed outside of
the RODY simulation area, the original total travel time matrix is derived from the V-MRDH model. The
travel times from the traffic simulation are incorporated into this travel time matrix. This is achieved by
subtracting the observed travel time in the baseline run (representing the standard Rotterdam network)
and subsequently adding the travel time for each OD pair observed in the last iterative traffic simulation.
This process ensures that the relative change in travel time is applied. For modal alternatives, travel
time is the only attribute that is considered in the utility function. The formula for calculating the utility
for car trips per OD pair is presented in Equation 4.1. This is a linear function, as further explained in
Chapter 6.

V OD
car = ASCcar + βTT,car · TTOD

car (4.1)

To estimate the new modal split, it is also necessary to calculate the utilities for bicycle and public
transport trips for each OD pair. Since RODY exclusively simulates car traffic, the travel characteristics
for these alternatives are sourced from the V-MRDHmodel. It is assumed that the travel characteristics
of these alternative modes are minimally influenced by user volumes, as the public transport and bicycle
networks are less susceptible to congestion compared to the road network. For example, increased
public transport demand may result in crowding but typically has a negligible effect on travel time. For
the case of Rotterdam, there is enough spare capacity in the public transport network, with most of the
public transport lines having an occupancy rate of under 90% in rush hour [RET, 2024]. This makes the
constant travel time for the alternative public transport a realistic assumption. Based on this assumption,
the utilities for the alternative modes remain constant across iterations. The utility functions for public
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transport and cycling are specified in Equations 4.2 and 4.3 respectively.

V OD
PT = ASCPT + βTT,PT · TTOD

PT (4.2)

V OD
bike = ASCbike + βTT,bike · TTOD

bike (4.3)

Furthermore, the no trip alternative is incorporated into the model. The utility of this option is expressed
by the distance of the car trips and the increase in travel time resulting from reduced road capacity. The
corresponding function is provided in Equation 4.4.

V OD
notrip = ASCnotrip + βd,no_trip ·DOD

car + β2,D,no_trip ·
(
DOD

car

)2
+ γ · log(1 + ∆T

TOD
car

) (4.4)

This function incorporates a quadratic relationship with travel distance, as this best fits the data. Ad-
ditionally, there is a logarithmic relationship with the increase in car travel time. The logarithmic com-
ponent ensures that zero or near-zero increases in travel time result in a negative utility for the no
trip alternative, thereby reducing the probability of selecting this option. As the additional travel time
increases, the utility of the no trip alternative rises. The quadratic relationship with distance, along with
the specific role of the logarithmic function in accounting for increases in travel time, is discussed in
greater detail in Chapter 6.

4.3. Calculation new mobility distribution
Once the utility matrices for car trips and the no trip alternative have been updated, and the utility
matrices for the alternatives are calculated, the probability of selecting each alternative per OD pair
can be calculated using the logit model. The equation for the logit model is shown in Equation 4.5.
Applying the logit model generates a new distribution of car, bike, public transport, and the no trip
alternative for each OD pair. As the model includes a no trip alternative alongside the modal options,
the term “mobility distribution” is used instead of “modal distribution” for the remainder of this report.

Pi = Prob(Vi + εi > Vj + εj , ∀j ̸= i) =
eVi∑
j e

Vj
(4.5)

There is a methodological difference in calculating the new mobility distribution between the V-MRDH
model and the DiTra model. The V-MRDH model calculates the modal split using additional factors
such as trip purpose and travel distance. These factors are transformed into generalised costs and
distribution functions are applied per travel motive [Schoorlemmer et al., 2021]. In contrast, the DiTra
model utilises utility functions and the logit model, as this provides greater flexibility in incorporating the
no trip alternative.

Based on the total OD trip matrix, combining bike, car and public transport trips, derived from the V-
MRDH model and the original travel characteristics from the V-MRDH model, the mobility distribution
based on the utility functions in the DiTra model is computed for the base situation, the normal Rot-
terdam car network. The difference in calculation method compared to the V-MRDH model results in
a slightly different base OD matrix for cars. This difference is small for the suburbs, but a higher dif-
ference can be observed for the city centre. The reason for this larger difference in the city centre is
because of the car parking limit in the V-MRDH model. This reduces the car traffic towards the city
centre based on the available parking places in this area.

If the OD matrix calculated from the utility functions in the DiTra model were directly applied to the
initial traffic simulation of the DiTra model, this would lead to travel patterns that differ from those of the
original RODY model. This is undesirable, as the original OD matrix in the RODY model is calibrated
on the traffic situation in Rotterdam, therefore reflecting the actual traffic situation as best as possible.

Therefore, the number of car trips in the original RODY model is considered the primary reference.
Based on the share of car trips derived from the utility functions in the DiTra model, the total OD trip
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matrix (car, bike and PT trips combined) for the DiTra model, is recalculated per OD pair based on
the number of car trips in the original RODY model and the probability of choosing the car alternative
calculated by the utility functions in the DiTra model. This adjust the overall OD matrix, but ensures
that only changes in travel time influence a change in number of car trips.

4.4. Optimisation convergence
To calculate the new mobility distribution, information from previous simulations is also utilised to im-
prove convergence speed. Applying Equation 4.5 to the newly calculated utility matrices yields new
model split matrices. For the subsequent iteration, the model split matrices from previous iterations are
also employed to compute the new model split for the current iteration, thereby expediting the process.
The calculation of the new modal split matrices is based on Equation 4.6 [Srinivasan and Bonvin, 2003].

ũk = ũk−1 + αk ·∆uk (4.6)

Here, ũk represents themodal split value applied in the next iteration, while ũk−1 denotes the value used
in the previous iteration. ∆uk is the difference between the previous iteration ũk−1 and the outcome of
the next iteration without relaxation, uk. αk is the weighting factor that determines the extent to which
∆uk is incorporated into the new iteration. It is selected such that αk = 1

k−1 , ensuring that each uk for
k = 1...K contributes equally to the new iteration.

4.5. External trips in the RODY model
As discussed, the RODY model simulates traffic solely within the city of Rotterdam. In the DiTra model,
it is essential that the original origin and destination are maintained, as otherwise, the mode shift calcu-
lations would become highly ambiguous. For recalculating the Origin-Destination matrix, the 371 x 371
matrix used in the RODY model is expanded to a 6101 x 6101 matrix for the DiTra model, which will be
utilised to recalculate the OD matrix. The RODY model includes 256 internal zones, which are areas
within Rotterdam that both generate and attract trips, as they contain residential, business, industrial or
recreational functions. Additionally, the model incorporates 115 external zones, which represent high-
ways, national roads and city roads where traffic demand enters or leaves the RODY network. The
6101 x 6101 matrix in the DiTra model is divided into four quadrants (see Table 4.1), each represent-
ing a different type of trip, depending on whether the origin or destination is located within the RODY
network or outside it. Each quadrant is explained below.



1 · · · 254 255 371 V 0001 · · · V 7786
1 a1,1 · · · a1,254 a1,255 a1,371 b1,V 0001 · · · b1,V 7786

...
...

. . .
...

...
...

...
...

. . .
...

254 a254,1 · · · a254,254 a254,255 a254,371 b254,V 0001 · · · b254,V 7786

255 a255,1 · · · a255,254 a255,255 a255,371 b255,V 0001 · · · b255,V 7786

371 a371,1 · · · a371,254 a371,255 a371,371 b371,V 0001 · · · b371,V 7786

V 0001 cV 0001,1 · · · cV 0001,254 cV 0001,255 cV 0001,371 dV 0001,V 0001 · · · dV 0001,V 7786

...
...

. . .
...

...
...

...
...

. . .
...

V 7786 cV 7786,1 · · · cV 7786,254 cV 7786,255 cV 7786,371 dV 7786,V 0001 · · · dV 7786,V 7786


Table 4.1: OD matrix format applied in the DiTra model with internal RODY zones and V-MRDH zones (V) outside of

Rotterdam. The values a, b, c and d correspond to od values for respectively internal-internal, internal-external,
external-internal, external-external

The first quadrant contains trips between internal zones in Rotterdam. The origins and destinations
are internal RODY zones. The OD values in this quadrant are a direct copy of the original RODY OD
matrix applied in the RODY model. For the travel time matrix, for each zone, the V-MRDH centre zone
is selected, which is used as the origin or destination to determine the travel time matrix based on the
VMRDH model.
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The second and third quadrant contain trip that start in Rotterdam and leave Rotterdam (2nd quadrant)
or start outside of Rotterdam and ends in Rotterdam (3rd quadrant). The zones in the VMRDH model
contains the full size of the Netherlands, where the zones are bigger, i.e. less detailed, moving further
from theMetropolitan area of Rotterdam and TheHague. All of the V-MRDH zones outside of Rotterdam
are assigned to a single external zone in the RODY model, in order to make a coupling between the
OD matrix applied in the DiTra model and the RODY model which simulates the traffic. An illustrative
map, zoomed in on Rotterdam, is shown in Figure 4.2.

Figure 4.2: Zone layout for the external RODY zones (zoomed in on Rotterdam). White zones are the RODY zones in
Rotterdam. All other colours represent a coupling to a VMRDH zone to an external link

Assigning each zone outside of Rotterdam to an external RODY zone implies that if there is a trip
from a specific zone outside of Rotterdam to Rotterdam, the car trip will use that link, which may be a
highway, national road or city road, to enter the network. This is an assumption, as the destination in
Rotterdam or traffic conditions may influence the external zone used to enter the network in practice.
This can also be observed when the 6101 x 6101 matrix is aggregated to the 371 x 371 matrix, which
yields slightly different results. This discrepancy arises because the original RODY 371 x 371 matrix is
generated based on a cutout of the V-MRDH model. It is crucial to retain the original 371 x 371 matrix;
otherwise, travel patterns may deviate from the normal situation, which would make the outcomes of
the models incomparable. Therefore, the 6101 x 6101 DiTra matrix is adjusted to ensure that the sum
of cars entering the network via an external RODY link remains consistent. This is accomplished by
applying a factor to the cells in the 6101 x 6101 matrix. This factor is calculated by dividing the sum of
the car trips entering a particular external zone, determined based on the 6101 x 6101 matrix, by the
value of car trips entering that particular zone in the original 371 x 371 RODY matrix. Conversely, the
same process applies to trips starting in Rotterdam and exiting the network through an external zone.

The fourth quadrant of the 6101 x 6101 matrix consists of trips that go from one external RODY zone
to another external RODY zone, which essentially represents through traffic in the network (with no
origin or destination in Rotterdam). Under the assumption that only the capacity of roads within the
city is reduced, through traffic is considered to remain unaffected, as traffic on highways and national
roads surrounding Rotterdam will not be impacted by the additional travel time caused by the capacity
reduction within the city.

In each iteration of the DiTra model, the 6101 x 6101 matrix is recalculated based on the travel times
from the simulation. Subsequently, the matrix is aggregated to the 371 x 371 matrix, where the zones
outside of Rotterdam are assigned to their respective external zone in the RODY model. With this new
371 x 371 matrix, another cycle of the iterative process is initiated by the traffic simulation.

4.6. Optional: reducing initial car traffic demand
It is possible to initiate the first simulation not with the original OD matrix, but with a reduced matrix.
This approach can be adopted when a significant road capacity reduction is introduced, in order to
prevent gridlocks during the simulation. Gridlocks increase the simulation run time significantly and are
therefore undesirable. Based on a specified percentage decrease, the trips that are directly affected are
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adjusted. For example, the user can choose to reduce the initial OD matrix by 10%, thereby reducing
the traffic demand on the directly affected OD pairs by 10%. The model user has the option to apply
this reduction factor. However, the downside of implementing this reduction is that the outcome of the
road capacity, when this is not communicated to people, is not known.

4.7. Optional: adjusting the travel time matrix for the alternatives
Another option that can be implemented in the model is the adjustment of travel times for specific
trips within the cycling or public transportation network. Travel times may be increased when, for
example, roadworks are combined with a simultaneous reduction in public transport service due to
road capacity reductions. Conversely, if public transport service is increased to accommodate reduced
car accessibility, travel times can be reduced for certain OD pairs. Similarly, in cases where cycling
lanes are closed, travel times can be increased for specific OD pair relationships. These OD pairs can
be selected by performing a selected link analysis on the car network within the RODY model.



5
Case study

This chapter presents the results of the case study conducted as part of this research. The case study
of this research are the roadworks of an intersection in the south of Rotterdam. In different phases,
roadworks have obstructed car traffic for longer periods of time. The primary purpose of this case
study is to provide both calibration and validation for the model and to gain insights into changes in
travel behaviour during the roadworks.

This chapter is structured as follows. Section 5.1 introduces the case study. Sections 5.2 and 5.3
examine the impact of the roadworks on car traffic, with a focus on absolute reductions in trips and
changes in the distribution of trip lengths, respectively. Subsequently, Section 5.4 addresses the data
on traffic volumes for alternative modes, although the available data was insufficient to observe any
meaningful effects.

5.1. Introduction case study
The location of the Roseknoop intersection is depicted in Figure 5.1. This intersection is situated in
the southern part of Rotterdam, in an area known as the Roseknoop. It marks the junction of the
Varkenoordseviaduct, Laan op Zuid, and the (2e) Rosestraat. Two photographs of the intersection are
provided in Figures 5.2 and 5.3.

Figure 5.1: Location of Roseknoop [Openstreetmap, 2024]
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Figure 5.2: Photograph of the Roseknoop intersection (1)
(image by the author)

Figure 5.3: Photograph of the Roseknoop intersection (2)
(image by the author)

Between January 2023 and July 2024, roadworks restricted car traffic at this intersection [Gemeente
Rotterdam, 2024a]. The intersection was closed to car traffic in different phases. The municipality
of Rotterdam expects that car traffic reduction occurred during the roadworks, as congestion impact
was lower than expected. Despite being a temporary capacity reduction, the extended duration of the
roadworks provides a sufficient time window to study the changes in travel behaviour. This case study
was chosen because it represents one of the few capacity reductions in Rotterdam post-COVID-19.
Many other road narrowing projects in the city occurred during the pandemic, making it challenging to
assess the relationship between the reduction in car trips and the road capacity reductions.

From January 2023 to April 2023, phase 1 of the roadworks was implemented. During this phase,
the side streets of the Roseknoop junction - the Rosestraat, Putselaan, Beijerlandselaan and Colosse-
umweg - were disconnected from the corridor formed by Laan op Zuid and the Varkenoordseviaduct
(see Figure 5.4). Bus lines 66 and 77, as well as tram line 25 were diverted, while tram line 20 (Rot-
terdam Central station - Lombardijen) was suspended. Line 23 continued to operate along the corridor
Laan op Zuid / Varkenoordseviaduct and line 125 was added as temporary service between Rotterdam
Central Station and Stadion Feyenoord to make sure capacity along the Laan op Zuid / Varkenoordse-
viaduct was sufficient. For pedestrians and cyclists, the Roseknoop was accessible for the majority of
the time. During certain periods, minor diversions were required. It is assumed that these diversions
did not have a significant impact on travel time.

Figure 5.4: Roseknoop roadworks phase 1 where the side streets, indicated with the red arrows, of the Laan op Zuid -
Varkenoordsviaduct corridor were closed for car traffic (background: Openstreetmap [2024]).
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Between May 2023 and mid October 2023, phase 2 of the roadworks were carried out. During this
phase, the capacity reduction was more significant than in phase 1, as, in addition to the disconnected
side streets, traffic along the Laan op Zuid / Varkenoordseviaduct corridor was also blocked. This is
illustrated in Figure 5.5. In this phase, tram services along the Laan op Zuid / Varkenoordsviaduct
corridor were suspended. As a result, the tram network connecting the northern and southern parts of
Rotterdam was disrupted, requiring an additional transfer to the metro for public transport trips between
Rotterdam South and Rotterdam North.

Figure 5.5: Roseknoop roadworks phase 2 where the full junction was closed off for car traffic (background: Openstreetmap
[2024]).

In mid October 2023, phase 1a started. This phases was comparable to the situation of phase 1, with
the slight change that the side street Hilledijk was reconnected to the Putselaan. In January 2024, the
2e Rosestraat side street was connected to the Laan op Zuid / Varkenoordseviaduct corridor. This
phase is called 1b.

5.2. Car trips: reduction in traffic volume
This section examines the impact of the roadworks on car traffic in the vicinity of the Roseknoop in-
tersection. The data employed for this analysis consists of traffic signal data [Gemeente Rotterdam,
2024c]. Inductive loop detectors positioned in front of traffic signals register and record the number of
vehicles passing through each lane of the signalised junction.

To assess the reduction vehicle numbers within the broader area surrounding the Roseknoop road-
works, the number of vehicles entering a cordon during the evening peak period is counted. A cordon
is a bounded area that monitors traffic flows both into and out of the specified region. The cordon in
this study contains the Roseknoop intersection as well as plausible alternative routes that serves as
substitutes for it. Consequently, the measurement captures the number of vehicles that have altered
their mode of transport, departure time, destination or trip frequency, without accounting for those that
have simply chosen an alternative route to reach their destination. The study area, along with the
designated measurement locations, is depicted in Figure 5.6.
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Figure 5.6: Study area with measuring locations indicated (background: Openstreetmap [2024]).

By using the traffic signals at the boundary of the study area, an almost entirely enclosed cordon can
be established, except for certain local roads that connect directly to the main road network without
signalised intersections. As these roads primarily serve small neighbourhoods at the local level, it is
assumed that they do not function as major diversion routes following the capacity reduction. Conse-
quently, it is presumed that traffic volumes on these local roads remain constant and do not significantly
affect the overall deviation of vehicles entering the cordon.

Since traffic signals serve as the primary data source, and detection loops are only positioned to register
vehicles approaching the intersections rather than those departing, only inbound traffic to the cordon
can be accurately measured. Themain limitation of this method is that trips originating within the cordon
and have a destination inside or outside this area, are not captured in the dataset. This can result in
an underestimation of the overall reduction in trip numbers due to the roadworks.

The number of vehicles entering the cordon in the evening rush hour is analysed before, during the
different phases and after the roadworks. The result is shown in Figure 5.7.
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Figure 5.7: Number of vehicles entering Roseknoop cordon for evening peak period between 3 and 5PM (5 day rolling
average).

The figure illustrates that, particularly during the second phase of the roadworks, a decline in the number
of vehicles entering the cordon can be observed, a trend further reinforced by the summer holiday.
Following phase two, the number of car trips increases; however, it does not return to the traffic levels
recorded before May 2023.

The annual traffic fluctuation and annual growth influence makes it difficult to interpret these values.
Therefore, reference measure points are selected to filter out these factors. These locations are the
result of a trade-off between measuring the annual traffic fluctuation and growth in Rotterdam, but are
relatively far away from the Roseknoop, so that the capacity reduction of the Roseknoop has minimal
influence on the traffic levels measured at the reference locations. The data of the reference locations
in further elaborated in Appendix C.

The traffic levels at the reference locations and those entering the Roseknoop cordon are compared
by using the average traffic level in November 2022 as the reference point (represented as the 0% line
in the figure). The results are presented in Figure 5.8.
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Figure 5.8: Traffic volume entering Roseknoop cordon [Gemeente Rotterdam, 2024c] and reference locations [NDW, 2024] in
evening peak period (average traffic levels in November 2022 are used as reference).

This figure illustrates that, during phase 1 of the roadworks, the progression of traffic volume in the
Roseknoop area closely follows that of the reference locations. However, in phase 2, a substantial
difference becomes evident. The reference traffic intensity exceeds the traffic entering the cordon,
except during the summer holiday period. After phase 2, a smaller yet significant reduction in car trips
is observed, with the exception of the Christmas break. The graph indicates that during phase 2, a
considerable proportion of travellers adapted their behaviour, and even after phase 2, traffic in the
Roseknoop area remained lower than before. This suggests that a proportion of individuals did not
revert to car use.

Notably, the decline in car traffic during the summer and winter breaks is less pronounced in the Rose-
knoop area compared to the reference locations. This can be explained by the fact that a share of
individuals had already shifted away from car travel. During the summer and winter breaks, the reduc-
tion in congestion may have encouraged others who had previously shifted away from car use to start
travelling by car again.

The difference between the two lines is depicted in Figure 5.9, which reinforces the above mentioned
observations. During phase 1, no significant deviation is observed. Due to the stochastic nature of traf-
fic, the reduction in car trips during this phase is likely too small to be detectable in the vehicle numbers
that enter the cordon. The largest deviation occurs towards the end of phase 2, several months after
the start and following the summer break. During this period, a 15% reduction in car trips is observed in
the Roseknoop area compared to the reference locations, indicating that 15% fewer vehicles entered
the area during the evening peak. This suggests that, as a result of the phase 2 roadworks, at least
4,400 car trips changed their departure time, travel mode, destination, or trip frequency.

After phase 2, with the introduction of phases 1a and 1b, the difference relative to the reference traffic
levels stabilises at approximately 6%, corresponding to a reduction of between 1,800 and 2,100 vehi-
cles. No significant difference in traffic levels is observed between phase 1a and 1b. Even after the
roadworks the traffic entering the Roseknoop cordon remained under the reference traffic. However,
this period is too small to make conclusions about the long term effects.
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Figure 5.9: Difference in traffic level percentages between Roseknoop cordon and reference traffic measuring locations in
evening peak period (data source: Gemeente Rotterdam [2024c] and NDW [2024]).

5.3. Car trips: change in trip length distribution
The second step involves identifying the types of trips that have been reduced by analysing the distri-
bution of trip lengths before, during the various phases, and after the road capacity intervention. This
analysis utilises data from TomTomMove. While TomTomMove does not capture all trips—since it only
accounts for vehicles equipped with a built-in TomTom device—it provides an opportunity to assess trip
patterns through the study area across the different phases of the intervention. It is assumed that the
TomTomMove data offers a reliable reflection of overall trip behaviour in the region. This analysis yields
valuable insights into the types of car trips that are no longer being undertaken.

Figure 5.10 illustrates the absolute number of trips through the study area (refer to Figure 5.6), seg-
mented by categories of travel distance. Data has been collected for four distinct periods: November
2022 represents the situation prior to the road capacity intervention, while January 2023 marks the
beginning of the first phase of the roadworks. By April 2023, the traffic patterns are considered to
have stabilised at a new equilibrium for the first phase. Phase 2 began in May 2023, with September
2023 reflecting the new equilibrium for this second phase. Finally, September 2024 signifies the period
following the completion of all roadworks.
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Figure 5.10: Distribution of trip length before, during (two phases) and after road works Roseknoop (data source: TomTom
[2024])

A notable finding is the consistent exponential decline with distance in the number of trips across all time
periods, with the majority of trips being under 10 kilometres. To account for variations in the number
of days per month and potential increases in TomTom users, the distribution of trips across distance
categories is expressed as a percentage of the total trips per month. This provides a more accurate
reflection of changes in travel patterns, as illustrated in Figure 5.11.

Figure 5.11: Share of car trips by distance before, during (two phases) and after roadworks at Roseknoop (data source:
TomTom [2024])

The shares of traffic volume per distance is than multiplied by the monthly average evening peak traffic
volume entering the Roseknoop cordon (which was found in the traffic intensity analysis in Section 5.2).
The result is the average evening peak traffic volume by distance category, shown in Figure 5.12.
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Figure 5.12: Average evening peak traffic volume in Roseknoop area by distance category. Average traffic volume per
distance category during the evening peak, derived by combining shares [TomTom, 2024] with the measured total number of

trips [NDW, 2024]. The data represents periods before, during (two phases) and after roadworks at Roseknoop

To facilitate comparison between the different phases, Figure 5.13 illustrates the change in trip lengths
during each roadwork phase relative to November 2022 (pre-roadworks).

Figure 5.13: Absolute changes in traffic volume per distance category during the evening peak, compared to the month before
roadworks at Roseknoop. Data derived from TomTom Move shares [TomTom, 2024] and measured total trips [NDW, 2024],

covering periods before, during (two phases), and after the roadworks.

In this figure, several notable observations can be made. Across most of the roadwork phases, as well
as the post-intervention phase, a reduction in trips is evident across all distance categories, with the
exception of phase 1. During phase 1, there is an increase in trips of less than 5 kilometres, while trips
exceeding 5 kilometres experience a reduction. A plausible explanation for the increase in car trips of
less than 5 kilometres could be the diversion and disconnection of local bus services in the area, which
likely made public transport a less attractive alternative.

Phase 2, which represents the most substantial reduction in road capacity, sees the greatest overall
reduction in car trips, particularly for trips in the 5 to 10 kilometres range. For trips longer than 10
kilometres, the reduction is more modest across all distance categories. As noted in Section 5.2, during
phase 1b (April 2024), traffic levels did not return to those observed before phase 2. In comparison to
phase 2, phase 1b shows the most significant increase in trips within the 5 to 10 kilometres range.
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In Figure 5.14, the relative change in traffic volume across distance categories is presented. The figure
reveals that shorter trips (under 5 kilometres) experience the smallest relative reduction, whereas trips
exceeding 10 kilometres show a more pronounced decline, particularly during the second phase of
the roadworks. This contrasts with Figure 5.13, where the 0-5 kilometre range represents the largest
category in absolute terms. This phenomenon can be attributed to the exponential negative relationship
between trip frequency and distance, with the 0-5 kilometre range containing the highest number of trips.
Although Figure 5.14 appears to indicate a significant dip in the longer distance categories, the absolute
figures for these categories remain low.

Figure 5.14: Relative changes in traffic volume per distance category during the evening peak, compared to the month before
roadworks at Roseknoop. Data derived from TomTom Move shares [TomTom, 2024] and measured total trips [NDW, 2024],

covering periods before, during the two phases and after the roadworks.

Thus, the results indicate that the 0–5 km range experiences the smallest relative reduction in car
trips, whereas trips exceeding 5 km exhibit a more substantial and uniform decline of between 20–35%
during the most intense phase of the roadworks. This suggests that shorter trips are more resilient to
disruptions in road capacity, likely because trips under 5 km already have a strong potential for modal
shift to cycling, meaning those who still choose to drive likely have fewer viable alternatives. In contrast,
longer trips are more elastic and more readily avoided or substituted by alternative modes of transport.
In contrast, longer trips demonstrate greater elasticity and are more readily foregone or substituted by
alternative modes of transport.

5.4. Cycling and public transport trips
In addition to examining the decline in car usage, an analysis of the other transport modes was con-
ducted to assess whether any shifts towards cycling or public transport could be detected. The number
of counting locations for cyclists is significantly fewer than for cars, which limited the ability to identify
meaningful trends. With regard to public transport, data related to tram lines in the area were obtained
from the Rotterdam public transport operator, RET. The number of passengers on the affected lines
was analysed; however, due to alterations in public transport services, such as rerouted and suspended
tram and bus lines, no observable trends could be identified in this instance either.

For the remainder of this research, this implies that calibration or validation based on the increase in
public transport and cycling trips is not feasible. Consequently, the calibration and validation will be
grounded in the data analysis of car usage.



6
Model calibration

This chapter outlines the calibration of the model, in which the parameters for the utility functions are
estimated. The calibration is conducted for phase 2 of the Roseknoop roadworks. Themodel calibration
is performed in three stages. Firstly, a model that considers the three modes—car, bicycle, and public
transport—is developed. This model calculates the number of car trips that transition to alternative
modes as a consequence of phase 2 of the Roseknoop roadworks. This is elaborated further in Section
6.1. In the second stage, the outcomes of the model from step 1 are compared with the observed traffic
analysis. This is presented in Section 6.2. Based on the discrepancies between the data analysis
and the model’s output, the no trip alternative is calibrated in step 3. The no trip alternative in the
model encompasses all car trips that no longer enter the Roseknoop area during the evening rush hour
following the reduction in road capacity, and that did not shift to other modes. This alternative includes
individuals who have stopped to make the trip, adjusted their departure times to avoid the evening
rush hour, or chose an alternative destination outside the Roseknoop area as a result of the road
capacity reduction. The method for determining the parameters for the no trip alternative is outlined in
Section 6.3. An overview of the calibration process is provided in Figure 6.1. The figure illustrates the
progression of the modal split and aims to facilitate understanding of the calibration methodology.

37
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Figure 6.1: Illustration of modal split to clarify the methodology of calibrating this model

6.1. Step 1: Model with alternatives car, bike and public transport
In Chapter 4, the utility functions are introduced. The utility functions for the modalities are presented in
the Equations 4.1, 4.2 and 4.3. This section outlines the estimation of the Alternative Specific Constants
(ASCcar, ASCPT, ASCbike) and the coefficients for the travel time (βTT,car, βTT,PT, βTT,bike) for the initial
model.

V OD
car = ASCcar + βTT,car · TTOD

car (4.1)

V OD
PT = ASCPT + βTT,PT · TTOD

PT (4.2)

V OD
bike = ASCbike + βTT,bike · TTOD

bike (4.3)

These parameters are determined based on the model outputs of the V-MRDH traffic model. The
available data includes the travel time matrix for the three alternatives and the modal split per OD
pair. The reason for not directly using the distribution functions from the V-MRDH model is because
the functions are far more detailed. The functions are based on generalised costs and are split out
per motive and car availability. The functions also combine the modal split with the distribution of trips
[Schoorlemmer et al., 2021]. Incorporating all these factors would lead to a very comprehensive model,
without the flexibility of adding a no trip alternative. Given that only travel times changes, the model
output is used as data to estimate the parameters for defined utility functions for the alternatives.

The calibration is based on a set of OD pairs. The selected OD pairs are based on two criteria. The first
criterion is that the OD pairs must have at least an origin or a destination in the city of Rotterdam (the
RODY study area). Therefore, the chosen OD pairs are in the first, second and third quadrant of the
overall OD trip matrix, as explained by Table 4.1. This ensures that the parameters are appropriate for
the context of large cities, like Rotterdam. The second criterion is that the OD pair must have influence
on generating trips. The minimum trip value for OD pairs is set to 0.2 to be selected. This means that
at least in 1 out of 5 runs, there is a car trip generated for that OD pair. This ensures that most of the
trips performed in the model are included, while excluding OD pairs with minimal impact on the OD
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matrix. An illustrative data table of the selected OD pairs is provided in Table 6.1. It should be noted
that this data is based on a model outputs, which inherently involve certain assumptions.

ODpair TTcar TTPT TTbike pcar pPT pbike

1,3 7.439 73.021 13.525 0.261298 0.000000 0.738702
1,4 6.745 70.128 18.024 0.622820 0.000000 0.377180
1,5 6.898 70.162 19.443 0.565965 0.000000 0.434035
1,6 11.701 70.123 30.797 0.639180 0.000000 0.360820
1,9 7.711 77.628 21.190 0.837694 0.000000 0.162306
... ... ... ... ... ... ...

V7786,179 130.838 176.528 813.078 0.804296 0.195704 0.000000
V7786,180 128.913 177.085 812.763 0.484246 0.515754 0.000000
V7786,183 129.240 178.391 811.055 0.141459 0.858541 0.000000
V7786,184 131.360 177.528 810.003 0.633929 0.366071 0.000000
V7786,185 129.751 184.614 805.021 0.538717 0.461283 0.000000

Table 6.1: OD pair data used for the modal split calibration (‘V’ indicates VMRDH-zone)

Based on the OD pair data, the parameters are estimated using the Maximum Likelihood Estimation.
This method finds the parameter values that maximize the likelihood function, as shown in Equation
6.1.

L(θ|X) =

n∏
i=1

P (xi|θ) (6.1)

To simplify computations and improve numerical stability, particularly when dealing with very small
probabilities (which can result in very large or very small values in the product), the log-likelihood is
used (see Equation 6.2).

logL(θ|X) =

n∑
i=1

logP (xi|θ) (6.2)

Several forms of utility functions are considered and compared. The types of utility functions are com-
pared by calculating the modal fit for discrete choice models, see Equation 6.3.

ρ̄2 = 1− L(β)−K

L(0)
(6.3)

The first set of utility functions are the linear functions, as in the form of Equation 6.4. The second set
are non linear functions (see Equation 6.5).

V OD
mode = ASCmode + βt,mode · tOD

mode (6.4)

V OD
mode = ASCmode + βTT,mode · TTOD

mode + β2,TT,mode ·
(
TTOD

mode

)2 (6.5)

The set of linear functions results in a model fit of ρ̄2 = 0.3307, while for the non-linear functions
ρ̄2 = 0.3320. This represents a minor improvement in model performance. Both sets of utility functions
are plotted against the travel time in Figure 6.2. Note that in this figure, the utility functions assume
equal travel times for the three alternatives, which is often not the case in practice, for example, cars
typically have shorter travel times than bicycles, particularly for longer distances. This figure illustrates
that the difference between the two sets is not substantial, and the car utility is more evenly distributes
across the travel time for the non linear utility function. Given the minimal variation, the linear utility
functions are selected for the model.
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Figure 6.2: Comparison between linear and non linear utility functions

Table 6.2 shows the results of applying the Maximum Likelihood Estimation to the linear utility func-
tions. Parameter ASCcar is set equal to zero, as this alternative is chosen as the reference choice.
Consequently, the other ASC values represent the relative difference to the car alternative.

Parameter Value z-value p-value
ASCcar 0 - -
ASCPT -0.8405 -37.328 0.0
ASCbike 0.2624 20.184 0.0
βTT,car -0.0487 -51.364 0.0
βTT,PT -0.0327 -51.098 0.0
βTT,bike -0.0701 -103.102 0.0

Table 6.2: Parameter estimates of modal split with robust standard errors, t-tests, and p-values.

All the parameters have an absolute t-test outcome greater than 1.96 and a p-value below 0.05, indi-
cating the parameters are statistically significant. The estimated parameters also align with intuitive
expectations. For instance, if the travel time is very short, the bike is preferred over the car, and the
car chosen over public transport. Additionally, the β values are consistent with the underlying logic;
all travel time coefficients are negative, signifying that longer travel times make an alternative less at-
tractive. The parameter for bike is the most negative, as longer travel distances are unappealing for
cycling trips. Public transport, on the other hand, has the least negative value, as it allows for activities
such as working while travelling.

6.2. Step 2: discrepancy between model outcome and observed traf-
fic

The second stage of the calibration process involves comparing the outcomes of the initial model for
Roseknoop phase 2 with the traffic intensity analysis conducted for the cordon surrounding the Rose-
knoop.

For the traffic intensity analysis, data from TomTom Move is integrated with traffic signal data. TomTom
Move provides the distribution of car trip distances, while the traffic signal data is utilised to determine
the number of vehicles entering the Roseknoop cordon during each evening rush hour. The traffic
intensity for each distance category is presented in Figure 6.3 for the situation before the roadworks
and several months after the start of phase 2 of the roadworks.
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Figure 6.3: Number of vehicles entering Roseknoop cordon compared for before roadworks and during phase 2 of roadworks

Based on this information, a distribution in the reduction of trips per distance category can be made.
This is shown in Figure 6.4.

Figure 6.4: Difference in number of vehicles entering Roseknoop cordon compared for before roadworks and during phase 2
of roadworks

In addition to the data analysis, a model outcome of the capacity reduction of phase 2 of the road-
works is generated. The predictive model considers three travel alternatives—car, bicycle, and public
transport—and estimates the reduction in car trips alongside the corresponding increase in trips by
public transport and bicycle.

The data analysis counts the number of vehicles that enter the cordon between 3 and 6 PM. To compare
the model results with the data analysis, trips in the simulation that enter the cordon between 3 PM and
6 PM are selected. The simulation runs from 2 PM to 7 PM, allowing for warm-up and cool-down periods
before and after the evening rush hour. To extract the relevant trips, a factor is applied to generate an
OD matrix for trips occurring between 3 PM and 6 PM. The OD pairs are then filtered to include only
those that enter the cordon, i.e. OD pairs that drive on the set of links representing the cordon, in the
base model.

This process results in two OD matrices: one representing trips entering the cordon between 3 PM
and 6 PM prior to the road capacity reduction (from the base model) and another representing trips
entering the cordon after the reduction (from the model output). The difference between these OD
matrices allows for the calculation of the number of car trips that shift to bicycle or public transport,
categorised by trip distance. The results are presented in Figure 6.5.
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Figure 6.5: Model outcome roadworks phase 2 - number of car trips changed to public transport or bicycle

Next, the results of the data analysis and the model outcome are compared. As calibration is not
possible for the increase in public transport and cycling trips, the discrepancy between the data analysis
and the model outcome is interpreted as the portion of traffic that no longer uses the car during the
evening rush hour but does not switch to another mode of transport. This discrepancy is indicated with
the grey bars in Figure 6.6.

Figure 6.6: Comparison between model result and the traffic intensity analysis

When comparing the results of the model outcome and the traffic intensity analysis, it is notable that, in
absolute terms, trips within the 10 to 25 km categories are predominantly underestimated. A possible
explanation for this discrepancy is that, within the city (for trips below 10 km), viable alternatives exist
due to the extensive cycling infrastructure and dense public transport network, making modal shifts
more feasible. Conversely, for longer-distance trips, public transport and cycling become less attractive,
particularly for those not residing near a train station.

As a result, shorter trips are more likely to shift to alternative transport modes, whereas longer trips
are more inclined to adopt other behavioural adaptations, such as working from home or choosing
destinations outside the city centre. For trip distances of 20 km or more, the overall reduction in trips
is relatively small. However, car users who change their travel behaviour in these distance categories
rarely switch to cycling or public transport, despite the data analysis indicating a reduction in car trips
within these longer-distance categories.

The results of the discrepancy between the data analysis and the model outcome will be used to deter-
mine the parameters for the utility function associated with the no trip alternative.
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6.3. Step 3: Final model including no trip alternative
The output of Section 6.2, the gap between the observed reduction in car trips and the calculated
increase in PT and bicycle trips, will be used to determine the parameters for the utility function of the
no trip alternative. First, the data is retrieved for the calibration in Subsection 6.3.1. The parameters
are estimated in Subsection 6.3.2.

6.3.1. Data for calibrating no trip alternative
The first step is to construct a data table comparable to Table 6.1, however now with additional informa-
tion. An illustrative overview of the extended dataset is presented in Table 6.3. This dataset is filtered to
include only OD pairs that experienced an increase in travel time due to the road capacity intervention.
Each OD pair appears twice in the dataset: once representing the original situation, in which there is
no increase in car travel time, and once reflecting the scenario where travel time has increased as a
result of the road capacity intervention. This is the result of the initial model for the new equilibrium for
the Roseknoop roadworks phase 2. The construction of this table is explained below.

ODpair Dcar TTcar TT eq
car ∆T TTPT TTbike pmodel

car pmodel
bike pmodel

PT tripstot tripscar tripsdisappeared
car pno_trip pnew

car

3,51 12.02 17.26 20.28 3.02 47.60 42.73 0.70 0.12 0.17 1.08 0.76 0.06 0.06 0.65
3,53 17.11 18.42 19.35 0.93 44.87 45.45 0.72 0.10 0.18 1.10 0.79 0.03 0.03 0.69
3,54 13.85 20.30 26.40 6.09 47.36 48.39 0.67 0.11 0.22 1.32 0.89 0.15 0.11 0.56
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

V7757,226 87.94 116.48 121.42 4.94 175.96 373.57 0.66 0.00 0.34 0.84 0.56 0.09 0.11 0.56
V7761,13 89.46 64.56 64.61 0.05 124.09 348.79 0.85 0.00 0.15 1.15 0.98 0.00 0.00 0.85
V7761,250 88.24 67.43 70.35 2.92 104.37 364.15 0.70 0.00 0.30 1.36 0.94 0.09 0.07 0.63

Table 6.3: OD pair data used for the extended modal split analysis (‘V’ indicates VMRDH-zone)

First of all, the travel time in the new equilibrium is added (TT eq
car). This represents the travel time

outcome of the new equilibrium obtained using the model from step 1 of the calibration process. The
difference between TTcar and TT eq

car is∆T , which reflects the increase in travel time for the OD pair due
to the road capacity reduction. Secondly, pmodel

car , pmodel
bike and pmodel

PT are included. These represents the
probabilities of choosing each alternative, as calculated based on the utility functions and travel times
within the initial model. Thirdly, tripstot and tripscar are added and calculated, as they are necessary
to determine the number of car trips that must have disappeared. tripstot represents the original total
number of trips (car, bike and public transport) for the given OD pair, while tripscar is the number of car
trips for that OD pair, obtained by multiplying pmodel

car by tripstot.

Next, the number of car trips that must have disappeared can be calculated per OD pair. From Section
6.2, the number of car trips that additionally must disappear per distance category in the evening rush
hour, can be derived. This is shown in Table 6.3. For each distance category, the OD pairs are selected
and the disappeared cars are allocated proportionally based on the number of car trips (tripscar) and the
increase in travel time (∆T ). This proportional allocation is necessary due to the absence of additional
information on how the reduction is distributed. This results in the column tripsdisappearedcar in Table 6.3,
representing the number of trips that must additionally disappear-beyond those that switch to cycling or
public transport. Based on the value tripsdisappearedcar and the total amount of trips (tripstot), the probability
of opting for the no trip alternative (pno_trip) can be calculated. The probability of choosing the no trip
alternative is then subtracted from the probability of choosing the car, resulting in an updated probability
of car use pnewcar . Consequently, for each OD pair, a revised mobility distribution is established (pnewcar -
pmodel
bike - pmodel

PT - pno_trip), which can be used for the calibration of the model parameters, including the
no trip alternative.

6.3.2. Determination of model parameters
With this updated dataset, the parameters can be recalibrated. The same method of Maximum Likeli-
hood Estimation is applied as in Section 6.1. The form of the utility functions for the modal alternatives
remain consistent with those in Equations 4.1, 4.2 and 4.3. However, their parameters are re-estimated.
For the utility function of the no trip alternative, the formula as in Equation 4.4 is chosen.

V OD
notrip = ASCnotrip+βD,notrip ·DOD

car +β2,D,notrip ·
(
DOD

car

)2
+β∆T,notrip · log(β∆T,2,notrip+

∆T

TTOD
car

) (4.4)
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This utility function is non-linear, incorporating a quadratic relationship with trip distance and a loga-
rithmic function for the increase in travel time. The logarithmic function is selected because the utility
should initially be negative for small values of ∆T , ensuring that the probability of choosing the no trip
alternative remains minimal under minor travel time increases.

To determine the most appropriate functional form, multiple specifications for the utility function of the
no trip alternative were tested for model fit. A utility function with only a linear relationship with distance
resulted in a model fit of 0.6731, while the inclusion of a quadratic term slightly improved the fit to
0.6763. Although this increase in model performance is modest, a comparison of the utility functions
for different travel time increases (see Figure 6.7) reveals that the linear function effectively represents
an average of the non-linear function.

Figure 6.6 demonstrated that the largest discrepancy between the data analysis and themodel outcome
occurs in the medium-distance trip categories (10–30 km). Consequently, the non-linear function pro-
vides a more realistic representation. The observed decline in utility for distances exceeding 40 km can
be attributed to the fact that, at such distances, travel times are relatively high across all alternatives.
As a result, the utility of the no trip option decreases for longer distances, preventing an unrealistically
high probability of trip cancellation.

Figure 6.7: Comparing the linear and non linear utility function of the no trip alternative

Table 6.4 presents the results of the Maximum Likelihood Estimation.

Parameter Value z-value p-value
ASCcar 0 - -
ASCPT -0.8451 -44.05 0.0
ASCbike 0.2501 9.56 0.0
ASCnotrip -4.013 -61.45 0.0
βTT,car -0.0513 -29.79 0.0
βTT,pt -0.0331 -39.91 0.0
βTT,bike -0.0703 -78.53 0.0
βD,notrip 0.1640 32.64 0.0
βD,2,notrip -0.002033 -32.64 0.0
β∆T,notrip 0.9361 55.65 0.0
β∆T,2,notrip 0.00005126 57.02 0.0

Table 6.4: Parameter estimates of modal split with robust standard errors, t-tests, and p-values.
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As expected, the parameters of the utility functions for car, bike and public transport are relatively
similar to the parameters found in Section 6.1. For the utility function of the no trip alternative, the
value ASCnotrip = −4.013 suggest that the probability of choosing not to travel is relatively low for
short trips compared to opting for the car. This is a logical outcome, since the overall number of car
trips that are ultimately not undertaken is relatively small in comparison to the total number of car
trips. The parameters for distance, βD,notrip = 0.1640 and βD,2,notrip = −0.002033 indicate a parabolic
relationship with the travel distance. The utility is highest for trips within the middle distance categories,
which aligns with the findings in Figure 6.6, where a significant number of disappeared car trips are
observed particularly within the 10-40 km range.

The parameter β∆T,notrip represents the sensitivity of utility to an increase in travel time. With a value
of β∆T,notrip = 0.9361, it indicates that relative increases in travel time have a substantial influence on
the likelihood of choosing the no trip alternative. The parameter β∆T,2,notrip = 0.00005126 introduces a
small constant to the relative increase in travel time. This constant is extremely minor and only affects
cases where the relative travel time increase is close to zero. It ensures a smooth transition from
∆T = 0 to small positive values, preventing an abrupt change in utility.

However, incorporating this constant β∆T,2,notrip, results in a very small but non-zero probability of
choosing the no trip alternative when ∆T = 0. The theoretical maximum utility is Vnotrip = −9.95 at
Dcar = 40km. The final probability depends on the actual travel times of the alternatives. Assuming
TTcar = 40min, TTPT = 25min and TTbike = 70min, the resulting probability is Pnotrip = 0.00015. This
is an extremely low probability, and to prevent car trips from disappearing in the base scenario when
no additional delay is present, probability values are rounded to two decimal places.

The final utility functions, including their parameters, are presented in Equations 6.6, 6.7, 6.8, 6.9.

V OD
car = 0− 0.0513 · TTOD

car (6.6)

V OD
PT = −0.8451− 0.0331 · TTOD

PT (6.7)

V OD
bike = 0.2501− 0.0703 · TTOD

bike (6.8)

V OD
notrip = −4.013 + 0.1640 ·DOD

car − 0.002033 ·
(
DOD

car

)2
+ 0.9361 · log(0.00005126 + ∆T

TTOD
car,original

) (6.9)
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6.4. Results calibrated model
To provide insights into the behaviour of the utility functions, several graphs are presented, which il-
lustrate the mobility distributions for increasing values of additional travel time due to road capacity
reductions. Six typical OD pairs have been selected from the model to represent a range of trip types:
a short inner-city trip (Figure 6.8), a journey from the suburbs to the city centre (Figure 6.9), a trip from
an adjacent city to Rotterdam’s city centre (Figure 6.10), a journey originating from a distant city to
Rotterdam (Figure 6.11), a trip from the countryside near Rotterdam to the city (Figure 6.12) and a
trip from the countryside far from Rotterdam to the city (Figure 6.13). For each scenario, the mobility
distributions are displayed for varying values of ∆T . The mathematical functions corresponding to the
graphs can be found in Appendix D.

Figure 6.8: Mobility distribution for increasing additional travel
time for short inner city trip of 3.5 km (from Rotterdam

Feyenoord to Rotterdam Dijkzigt)

Figure 6.9: Mobility distribution for increasing additional travel
time for trip from a suburb to city centre of 9.1 km (from

Rotterdam Prinsenland to Rotterdam city centre)

The first two journey types take place within the city. The first is a short inner-city trip of 3.5 km, while
the second is a trip from the suburbs to the city centre, covering 9.1 km. The graphs indicate that for
the short inner-city trip, the majority of individuals shift from car use to cycling as travel time increases,
followed by public transport and the no trip alternative. For the suburb-to-city centre trip, a similar shift
from car use to cycling and public transport is observed; however, the no trip alternative is selected
more frequently. This suggests that individuals residing further from the city centre are more likely
to adjust their destination, departure time, or trip frequency compared to those living close to the city
centre, as cycling becomes less attractive over longer distances.
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Figure 6.10: Mobility distribution for increasing additional travel
time for adjacent city trip of 14.7 km (from Delft city centre to

Rotterdam city centre)

Figure 6.11: Mobility distribution for increasing additional travel
time for a trip from a suburb of another large city to Rotterdam
of 59.4 km (from Utrecht Overvecht to Rotterdam city centre)

Next, journeys from other cities to Rotterdam are analysed. The first originates from a city near Rot-
terdam, with a travel distance of 14.7 km. While public transport and cycling attract a small number
of additional users, the majority of car users opt to change their departure time, destination, or trip fre-
quency when travel time increases. For trips originating from a more distant city (59.4 km), the impact
on car use is even greater. Public transport and cycling do not experience a significant increase in
usage, while a substantial proportion of car users choose the no trip alternative.

For these longer distance journeys, the diminishing influence of additional travel time is evident, whereas
for trips from adjacent cities, the relationship appears almost linear. This can be attributed to the fact
that for shorter journeys, the impact of additional travel time remains significant as it increases. In
contrast, for longer trips, this effect diminishes because the overall travel time is already substantial,
and the relative impact of additional travel time becomes less pronounced. While a small increase
in travel time may still prompt individuals to alter their destination, destination, departure time or trip
frequency-since alternative modes such as public transport or cycling would likely result in even longer
travel times-the behavioural effect weakens as delays accumulate. For instance, when the additional
travel time increases from 10 to 15 minutes, the behavioural effect is smaller than when it increases
from 5 to 10 minutes. This is likely because travellers may have already adjusted to or accepted the
initial 10-minute increase and are therefore more inclined to tolerate an additional five minutes.
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Figure 6.12: Mobility distribution for increasing additional travel
time for a trip from the countryside close to the city of 17.7 km

(from Mijnsheerenland to Rotterdam city centre)

Figure 6.13: Mobility distribution for increasing additional travel
time for a far trip from the countryside to a large city of 66.8 km

(from Tholen (Zeeland) to Rotterdam)

The final set of trips concerns travel from the countryside to the city. The first case involves a short
countryside trip with a well-connected public transport link to the city. In this scenario, an increase
in travel time leads to a slight rise in public transport usage, while the majority of car users opt to
adjust their destination, departure time, or trip frequency. The second case involves a journey from a
more remote rural area (66.8 km from the city). The graphs illustrate that additional travel time has a
significant impact on car use. Public transport gains no notable increase in users, while nearly all car
users choose to opt-out for the trip altogether during the peak hour.

Overall, the probabilities suggest that for short journeys, an increase in travel time primarily results in
a shift towards public transport and cycling. In contrast, for longer trips, the transition from car use to
alternative modes remains minimal. Instead, these individuals are more likely to adjust their destination
choices, departure time or trip frequency.



7
Model validation

In this chapter, the model validation will be discussed. In Chapter 6, the model is calibrated using
the Roseknoop roadworks phase 2. The Roseknoop roadworks phase 1 is employed to validate the
calibrated model. Phase 1 represents the smaller of the two roadwork phases, where only the side
streets of the Laan op Zuid / Varkenoordsviaduct corridor are closed to car traffic. An overview of the
roadwork phase is provided in Figure 7.1. A more detailed explanation of the roadworks can be found
in Chapter 5. This chapter will first present the results of applying the model to Roseknoop roadworks
phase 1 in Section 7.1. Subsequently, the model results will be compared with the data analysis in
Section 7.2. Section 7.3 will conclude with the findings of the model validation.

Figure 7.1: Adapted infrastructure network during phase 1 of Roseknoop roadworks

7.1. Model result Roseknoop roadworks phase 1
This section will present the model results for Roseknoop roadworks phase 1. The model inputs consist
of the the adapted infrastructure network, as shown in 7.1, and the original OD matrix. The following
results were obtained.

For Roseknoop phase 1, the model required three iterations to reach the new equilibrium. The cumu-
lative distribution functions for both directly and indirectly affected OD pairs are displayed in Figure
7.2.
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Figure 7.2: Cumulative distribution function of the travel times for directly and indirectly trips per iteration

This figure illustrates that iteration 2 and 3 have fairly similar outputs. Figure 7.3 shows the progression
of the KS values for each iteration, with the KS value between the last two iterations indicated by the
solid line. The figure demonstrates that at the third iteration, the KS value drops below the threshold,
suggesting that the CDFs of the travel times between iteration 2 and 3 are so closely aligned that
the traffic has stabilised and a new equilibrium is found. Additionally, the KS-value for each iteration,
relative to the base scenario, is indicated in the figure by the dash-dotted line.

Figure 7.3: Progression of KS values between CDFs for the directly affected OD pairs (left) and indirectly affected OD pairs
(right). The dashed-dotted line is the KS value between the base and the iteration.
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In Table 7.1, an overview of the recalculation of the OD matrix during the different iterations is pro-
vided. ∆cartripssim represents the reduction in car trips applied in the traffic simulation of the iteration.
This simulation results in a certain increase in travel time for both directly and indirectly affected OD
pairs. These are indicated in the table as ∆Tdirectly and ∆Tindirectly, respectively. ∆cartripsrecalc re-
flects the outcome of the recalculated OD matrix, which results from the increased car travel time.
∆cartripsoptimised

recalc shows the result of applying the optimisation, where information from the previous it-
erations is used to determine the new OD matrix (see Section 4.3 for an explanation of the optimisation
process). This updated OD matrix is then used as input for the simulation of the next iteration.

Iteration ∆cartripssim ∆Tdirectly ∆Tindirectly ∆cartripsrecalc ∆cartripsoptimised
recalc

1 0 + 4.79 min + 2.80 min - 7774 - 3887
2 - 3887 + 2.38 min + 1.15 min - 3647 - 3807
3 - 3807 + 2.43 min + 1.04 min - 3229 - 3662

Table 7.1: Model results for the different iterations for phase 1 (all values are compared to the base scenario)

In the first iteration, the original OD matrix is applied in the traffic simulation. This leads to an average
increase of 4.79 and 2.80 minutes for directly and indirectly affected OD pairs, respectively. The in-
crease in travel times causes a significant reduction in car trips, amounting to 7,774 vehicles. For the
next iteration, the average of the original and recalculated OD matrix is used. This OD matrix shows a
reduction of 3,887 vehicles. The simulation of iteration results in a smaller impact on travel times, with
an average increase of 2.38 min for directly affected and 1.15 min for indirectly affected OD pairs. This
leads to a calculated reduction of 3,647 vehicles.

Through process optimisation, the new iteration results in a reduction of 3,807 car trips. This leads to
a change in travel time to 2.43 minutes and 1.04 minutes for directly and indirectly affected OD pairs,
respectively. These values are comparable to the previous travel time changes and yield a KS value of
0.019, which is below the threshold value of 0.025. Recalculating the ODmatrix based on the outcomes
of iteration 3 produces the final OD matrix, showing a reduction of 3,662 vehicles—equivalent to 4.4%
of the total affected car trips (82,800). Of these, 1,910 car trips are directly hindered (out of 27,700
directly hindered car trips), while 1,752 car trips are reduced which drove on the alternative routes (out
of 55,200 indirectly hindered car trips). An overview of the results from the third iteration is presented
in Table 7.2.

mode ∆trips directly affected indirectly affected
car - 3662 - 1910 (6.9%) - 1752 (3.2%)

bicycle + 947 + 514 + 433
public transport + 722 + 352 + 369

no trip + 1993 + 1044 + 950

Table 7.2: Final result of the model applied to Roseknoop roadworks phase 1 (all values are compared to the base scenario)

The table shows a slightly higher reduction in directly affected car trips compared to indirectly affected
car trips in absolute values. However, the total number of indirectly affected car trips is much higher
than that of directly affected car trips. There is a 6.9% reduction of directly affected car trips and a 3.2%
reduction of indirectly affected car trips. It is logical that the percentage reduction is higher for directly
affected car trips, since the directly affected car trips refer to vehicles which must take alternative routes.
This often results in higher travel times, even without considering potential additional congestion on the
alternative routes.

Regarding the alternatives to driving, Table 7.2 shows that the 3,662 reduced car trips are redistributed
as follows: 947 bike trips, 722 public transport trips and 1,993 people opting for the no trip alternative.
Thus, the largest portion of people choose this latter alternative. The no trip alternative includes not
only the decision to cancel the trip but also the possibility of adjusting the departure time outside of rush
hour or changing destination outside of Roseknoop area. Therefore, this large value is expected. Other
notable aspects include the distribution of directly and indirectly affected trips for the public transport.
For the bike and no trip alternative, the increase in trips for directly affected individuals is higher than for
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indirectly affected individuals, consistent with the reduction in car trips. However, for public transport,
there is an increase of 369 trips of indirectly affected car trips and 352 directly affected car trips. This
could be due to the fact that directly affected OD pairs typically have shorter distances than indirectly
affected OD pairs. As a result, directly affected OD pairs are more likely to switch to biking, while
indirectly affected OD pairs are more inclined to use public transport due to the longer distances.

7.2. Comparison traffic conditions model outcome to observations
The case study on phase 1 of the roadworks did not show a visible reduction in traffic intensity entering
the cordon (see Figure 5.9 in the case study). However, the model does indicate a reduction in vehicular
trips. This discrepancy can be explained by the fact that only vehicles entering the cordon are observed,
whereas trips that start and end within the cordon, as well as trips that start within the cordon and exit
it, are not accounted for. The model is calibrated on trips entering the cordon by determining the
parameters of the utility functions. These utility functions are then applied to all affected trips. As a
result, the DiTra model predicts a reduction in car usage, even though this reduction is not directly
visible in the data analysis.

Due to the lack of comprehensive trip data, a quantitive analysis is challenging to perform. Therefore,
a comparison of the traffic situation was conducted to facilitate qualitative validation. The average
speeds from TomTom Move during the equilibrium month of phase 1 of the roadworks (April 2023) are
compared to the congestion heat map generated by the DiTra model for the same phase. These two
aspects differ in their representation: the average speeds from TomTom Move highlight streets where
speed has deteriorated compared to free-flow conditions, measured at night, whereas the congestion
heat map visualises the locations of stationary vehicles, which colours ranging from blue, green to red
to indicate increasing congestion levels. While these aspects are not entirely directly comparable, both
maps provide insights into the location and intensity of congestion within the road network.

Figure 7.4 presents the average travel speed between 4 and 5 PM compared to the free-flow speed,
which is measured between 11 PM and 4 AM, for April 2023-four months after the implementation of
phase 1. Since this data analysis is compared to the congestion heat map, only travel speeds between
0 and 60% of the free-flow speed are displayed, highlighting areas with the most significant delays
and congestion. Figure 7.5 illustrates congestion at 5:30 PM as simulated by the DiTra model for the
equilibrium state of phase 1. This heat map represents the ‘average’ congestion pattern derived from
six different simulation runs. The average heat map is determined based on visual assessment of
congestion across these runs. The heat maps from the individual runs are provided in Appendix E.

Figure 7.4: Delay situation April 2023 (equilibrium of phase 1)
in the Roseknoop area [TomTom, 2024]

Figure 7.5: Average congestion heat map of Roseknoop
roadworks phase 1 as a new equilibrium (iteration 3)

The congestion heat map highlights three key areas of significant congestion around the Roseknoop
area. Near the Roseknoop, in Feijenoord, congestion levels have increased compared to the base
model results. Notebly, congestion has intensified on the Posthumalaan and at the junction of the
Laan op Zuid with the Brede Hilledijk / Vuurplaat. These locations align with the observed congestion
patterns in Figure 7.4. The second area of congestion appears on the left side of the map, around
’s Gravendijkswal and near the Maastunnelplein. These locations also experience congestion in the
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base model, as they are known to be busy even under normal conditions. The third area with additional
congestion is around the Bree and Groene Hilledijk. In the observed traffic data, congestion is also
visible at these locations, though it appears to be slightly more severe.

To further validate the model, Figure 7.6 presents the ‘average’ congestion heat map from the first
iteration of the DiTra model. This iteration represents the traffic situation where traffic demand remains
unchanged from before the roadworks were introduced.

Figure 7.6: Average congestion heatmap of Roseknoop roadworks phase 1 at 5 PM with original OD matrix (no disappearing
traffic). Red circles indicate additional traffic congestion locations compared to the congestion heat maps of the new equilibrium.

This heat map shows more congestion than Figure 7.5, which was expected given that the new equilib-
rium reflects a reduction of 3,662 vehicles in the simulation. Additionally, greater congestion is visible
when compared to the observed speed differences in Figure 7.4. The three circles in Figure 7.6 highlight
locations where more congestion appears in the majority of the model runs, compared to Figure 7.5. In
contrast, the observed situation in Figure 7.4 does not indicate a significant reduction in average speed
at these locations. This suggests that the traffic situation in the newly established equilibrium (Figure
7.5 aligns more closely with observed conditions than the scenario with the original traffic demand.

7.3. Conclusion model validation
Validating the model is challenging, as the roadworks phase used for validation is relatively small,
resulting in no visible reduction in the number of cars entering the cordon in the data analysis. Therefore,
the model was validated by comparing the observed average speeds with the congestion heat maps
from the traffic simulation, considering both the original traffic demand and the reduced traffic demand
at the new equilibrium. The heat map of the simulation revealed a clear overestimation of congestion
for the original traffic demand, whereas the heat map of the new equilibrium aligned more closely with
the observed data.

Based on these findings, it can be concluded that during phase 1 of the Roseknoop roadworks, a
reduction in car trips during the evening rush hour did indeed occur, as predicted by themodel. However,
fully assessing the model’s accuracy remains difficult. This is primarily due to the inability to validate the
predicted increase in bicycle and public transport usage or the number of individuals who discontinued
their trips in the Roseknoop area as a result of the road capacity interventions.
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Conclusion

The primary research question guiding this study is How can the change in travel behaviour be accu-
rately predicted following road capacity reductions in urban areas, and what insights can be drawn from
these predictions?. This question is addressed through the analysis of predefined sub-research ques-
tions. These questions are answered in Section 8.1. In Section 8.2, the assumptions of the model and
the resulting limitations are explained. Section 8.3 provides the final conclusions of this report. This is
followed by recommendations and implications for science and practice in Section 8.4 and Section 8.5
respectively.

8.1. Findings
This section will provide the findings of this study by answering all of the sub research questions.

Under what conditions does disappearing traffic occur, and what are the key drivers behind
this phenomenon?

Extensive research has been conducted on the effects of road capacity reductions on car use. Numer-
ous case studies have demonstrated changes in travel behaviour following such interventions [Chung
et al., 2012] [Tennøy and Hagen, 2020] [Nello-Deakin, 2022] [Melia and Calvert, 2023] [Gemeente Am-
sterdam, 2024]. A recurring finding across these studies is the stabilisation of congestion after an initial
adjustment period. While reductions in car usage are frequently observed, the extent to which this
occurs is highly context-dependent.

It is important to note that disappearing traffic does not inevitably follow road space reallocations [Cairns
et al., 2002]. For this phenomenon to occur, the following four conditions must be met:

1. Road space reallocation must result in a reduction of capacity
2. The original traffic intensity must exceed the newly established capacity.
3. Plausible alternative routes must lack sufficient capacity to absorb the surplus traffic.
4. The difference between the original intensity and the new capacity must be substantial enough

that shifting departure times (between peak and non-peak hours) alone cannot prevent increased
congestion.

The primary driver behind disappearing traffic is travellers desire to minimize friction during their jour-
neys. Capacity reductions trigger shifts in travel behaviour as individuals seek to mitigate increased
inconvenience [Nello-Deakin, 2022]. This behavioural adaptation typically takes several months [Vonk
et al., 2024], during which congestion and car usage are in imbalance before reaching a new equilib-
rium.

54
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What are the essential components of a predictive model for estimating changing travel
behaviour and how are its components interconnected?

Amethodology has been developed to replicate the process of finding a new equilibrium between traffic
congestion and the car usage. The framework for constructing a predictive model to estimate the
changing travel behaviour is presented in Figure 8.1. This model follows an iterative process of traffic
assignment and recalculation of the mobility distribution to establish a new equilibrium. The model
incorporates the three most common transport modes - car, bicycle and public transport - alongside a
no trip alternative which reflects adjustments in departure time, travel destination or trip frequency.

Figure 8.1: Framework of the model to predict the new equilibrium in mobility distribution following a capacity reduction.

The iterative process consists of three key steps. The first step involves traffic simulation where travel
times for each Origin-Destination (OD) pair are derived based on a predefined ODmatrix. In the second
step, travel times of affected trips are compared between the two last iterations. If the travel times are
comparable, traffic conditions have stabilised and a new equilibrium has been reached. Conversely, if
the travel times differ significantly, congestion and car usage remain imbalanced and a new iteration
is started. In the third step, travel times obtained from the traffic simulation are used to recalculate
the OD matrix. Based on defined utility functions, the probabilities of the alternatives of each OD pair
are calculated. This process generates, among other aspects, a revised OD matrix for car trips, which
serves as input for the subsequent iteration.

What insights do two case studies of road capacity reductions in Rotterdam provide about
changing travel patterns?

In the case study, the car usage before, during and after the Roseknoop roadworks is researched.
Based on traffic light data, the number of vehicles entering the Roseknoop cordon is analysed. The
Roseknoop cordon also contains the plausible alternative routes of the Roseknoop. These values are
compared to reference locations to take out seasonality and annual traffic growth. The roadworks
are divided in different phases. Phase 1 represents a smaller-scale roadwork phase, where only the
side streets Rosestraat, Putselaan, Beijerlandselaan and Colosseumweg of the corridor Laan op Zuid
/ Varkenoordseviaduct were restricted for car traffic. In phase 2, the intersection was fully restricted to
car traffic.

During phase 1, no significant reduction in number of cars entering the cordon is observed. However,
once phase 2 begins, a reduction in car trips becomes evident, with a 15% difference of traffic volume
between the car trips entering the cordon and the traffic intensity on the reference locations. This
translates to 4.400 car trips that initially entered the cordon but subsequently changed their travel mode,
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departure time, destination or trip frequency in the evening peak.

The case study also reveals that traffic does not fully return to its pre-restriction state after the restrictions
are lifted. A portion of the original car users maintain their altered travel behaviour even when capacity
is restored to normal levels. These observations were made up to one year after the capacity reduction
was lifted; however, the long-term effects beyond this time frame have not been examined.

What are the key characteristics of the calibrated predictive model?

The calibrated predictive model demonstrates several key characteristics. These enable it to effectively
capture and predict changes in mobility behaviour resulting from the additional travel time caused by
road capacity reductions. One notable feature of the model is its sensitivity to trip distance, which
significantly influences the nature of behavioural shifts.

For shorter trips, such as those within a city or between neighbouring cities, the model highlights a
marked shift away from car usage towards alternative modes of transport, such as cycling and public
transport. This behaviour is particularly evident for inner-city trips, where shorter distances make these
alternativesmore feasible. In contrast, for longer trips, themodel indicates that individuals are less likely
to adopt alternative modes of transport, such as public transport or cycling, due to the considerable
increase in travel time these options would entail. For these types of trips, individuals are more inclined
to adjust their destination, departure time, or trip frequency. For small increases in travel time, this shift
is significant; however, as the additional travel time increases, this effect diminishes.

How does the predictive model perform when applied to a case study in Rotterdam?

The effectiveness of the model is tested by applying it to the Roseknoop roadwork phase 1, which
occurred between January 2023 and June 2023. The data analysis of the traffic counts in the area
for this phase was insufficient to facilitate a quantitive comparison of the results. Consequently, the
traffic situation on the road was analysed instead. The congestion maps generated from the simulation
demonstrate that congestion emerged at the same locations, with amagnitude comparable to that of the
observed traffic congestion. Based on these findings, it can be concluded that the model’s estimation
of the reduction in car trips is robust when applied to phase 1 of the Roseknoop roadworks. However,
the distribution of increases in trips for the alternatives remains challenging to validate due to the lack
of comprehensive data.

What insights can be drawn from the model’s application for future urban planning and traffic
management?

This study provides several insights into the changes in travel behaviour in response to road capacity
reductions. Road capacity reductions can lead to shifts in travel patterns when travel time for vehicles
increases significantly. As a result of the increased travel time, the car becomes a less attractive mode
of transport, prompting individuals to shift to alternative modes or alter their departure time, destination,
or trip frequency. Following an initial adjustment period after the implementation of road capacity reduc-
tions, traffic congestion decreases and stabilises. However, average travel times in the surrounding
areas continue to rise slightly, even for car trips on alternative routes. Ultimately, the road capacity
reduction results in a new equilibrium, characterised by slightly more congestion and an associated in-
crease in travel time. Nevertheless, this congestion is less severe than it would have been if car travel
demand had remained unchanged following the capacity reduction. Based on the utility functions of
the model, shorter trips are more likely to shift to alternative modes, while longer trips tend to adjust
their destination, departure time or trip frequency.
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8.2. Model assumptions and limitations
This section outlines the assumptions made during the construction of the DiTra model, along with the
resulting limitations. First, general assumptions in traffic models are discussed, since the DiTra model
builds upon the outcomes of these models. Following this, the specific assumptions inherent in the
DiTra model are addressed.

The first assumption related to traffic models concerns the reflection of real-world patterns and the
potential deviations from actual conditions. Although calibrated, the model cannot perfectly predict
real-world patterns. There can be, for instance, errors in the Origin Destination matrices, or in the simu-
lation of traffic movements in the dynamic traffic model. These assumptions may lead to discrepancies
between the traffic conditions of the base scenario and real-world traffic patterns. Consequently, this
could influence the travel times derived from the simulation and result in slight variations in the OD split
within the new equilibrium after road capacity reductions. Moreover, traffic patterns will differ across
days and months, making it challenging to achieve a perfect match. Consequently, a highly detailed
model may not be particularly useful in this context. Furthermore, the travel characteristics per OD pair
used from the V-MRDH model are also subject to inaccuracies, which can impact the modal split and
influence the external segments of trips outside the RODY network.

Beyond the assumptions inherent in traffic models, the DiTra model also incorporates certain assump-
tions, particularly in Step 3 of the iterative process, where traffic demand is recalculated. First of all,
this recalculation is based on utility functions. The utility functions for the different modes of trans-
port consider only travel time as an attribute and are modelled as linear functions. This simplification
may constrain the accuracy of estimating the probabilities of choosing alternative modes. Based on
the outputs of these utility functions, the probabilities are calculated using the logit model. However,
the logit model also has its assumptions. One assumption that may be debatable is the presumption
that decision-makers possess complete knowledge of the characteristics of the available alternatives.
Habitual behaviour may prevent individuals from considering other options, which could result in an
overestimation of the likelihood of mode-switching. Another assumption, related to Step 3, concerns
the treatment of external trips. In the model, a V-MRDH zone located outside of Rotterdam is assigned
to a single external RODY zone. In practice, individuals may select alternative routes, influenced by
varying levels of congestion on specific paths. This assumption may reduce the model’s flexibility and
could lead to an overestimation of congestion.

The calibration process, in which the parameters of the utility functions are estimated, also involves
certain assumptions. Primarily, the calibration relies on a single case study. This approach renders the
model susceptible to biases associated with the specific context of the case study, potentially limiting
its generalisability. Additionally, the calibration method estimates the modal shift towards cycling and
public transport using the initial model and the gap between the data analysis and the outcome of the
initial model is considered to be the no trip section. Without comprehensive data to analyse the increase
in cycling and public transport trips, it is hard to validate where the cars change to. The validation of the
model similarly relies on a single case study, conducted at the same location as the calibration. This
may reduce the robustness of the validation process.

A signifiant limitation concerns the long-term effects on congestion. The model is validated solely
for the new equilibrium phases, offering no insights into traffic conditions two or three years after the
road capacity reduction. Over time, the equilibrium may shift due to internal factors, such as drivers
resuming car use and adapting to increased congestion. External factors, including population growth,
spatial development and economic fluctuations, could also influence equilibrium and lead to differing
congestion states.

The final limitation is the model’s applicability, which is limited to road capacity reductions within and
around the city centre. External-to-external trips are not affected by the model. Consequently, the effect
of capacity reductions on motorways or at motorway junctions cannot be estimated with this model.



8.3. Final conclusions 58

8.3. Final conclusions
This study has provided a comprehensive analysis of the phenomenon of disappearing traffic, the mech-
anisms underlying changes in travel behaviour following road capacity reductions and the performance
of a predictive model designed to estimate these changes. The findings reveal that disappearing traffic
occurs under specific conditions, primarily driven by travellers’ adjustments to minimise friction in their
journeys. Key condition is that congestion in the surrounding area increases if individuals do not adapt
their behaviour. These findings emphasise the context-dependent nature of disappearing traffic and the
importance of considering local traffic dynamics and behavioural patterns when planning interventions.
The data analysis further reveals a noticeable reduction in car usage, with evidence that individuals
have persistently adjusted their behaviour in response to these changes.

The predictive model developed in this study captures the iterative process of traffic stabilisation and the
reallocation of mobility distribution. Its application to case studies, such as the Roseknoop roadworks
in Rotterdam, demonstrates its ability to replicate traffic congestion patterns and reductions in car trips,
offering valuable insights despite data limitations. The model effectively predicts shifts away from car
usage for shorter trips and an increasing likelihood of behavioural adaptations—such as changes in
departure times or destinations—for medium to long trips.

Overall, the study highlights the value of integrating dynamic traffic simulations with the recalculation
of mobility distribution to estimate a new equilibrium in traffic congestion and car usage following road
interventions. The data analysis and model indicate that, after the adaptation period, the impact on
traffic congestion is limited. This indicates that, despite its limitations, traffic often behaves like a self-
regulating system, adjusting to variations in demand and conditions. Despite a slight increase in overall
travel time and congestion, it ultimately restores congestion to its typical levels. These findings provide
valuable insights for the development of low-car urban environments.

8.4. Implications for science
This study contributes to the scientific understanding of changing travel behaviour in response to road
capacity reductions, with the goal of achieving a low-car city. By integrating traffic simulation, conver-
gence analysis, and traffic demand recalculation into a three-step framework, it provides a replicable
approach for addressing dynamic travel behaviour under changing road network conditions. The find-
ings reveal distinct behavioural responses to road capacity reductions. Shorter trips demonstrate a
higher tendency to shift towards cycling and public transport, whereas longer trips show limited modal
changes. Instead, these trips often result in adjustments to departure times, destinations or trip fre-
quencies. This contrast improves the understanding of how travel behaviours vary with trip length. Fur-
thermore, the case study revealed that, following road works, traffic volumes remained low, suggesting
that individuals adapted to new travel behaviours, which subsequently became habitual, reducing their
reliance on car usage.

This research offers potential to open up new directions for investigation into travel behaviour and
traffic management. The implications resulting this study can be grouped in two categories; further
exploration of the predictive model itself and research into the behavioural findings derived from the
model.

Regarding the predictive model, the no trip alternative currently aggregates four aspects: changing de-
parture time, destination and trip frequency. Ideally, these should be separated into distinct categories,
particularly focusing on trip frequency reduction as separate alternative. Limited research exists on the
value individuals place on different trip types. The increased occurrence of remote working, acceler-
ated by the COVID-19 pandemic, could significantly influence mobility patterns and the distribution of
travel demand. More information, for example by stated preference data, should be gathered regarding
the value of not undertaking a particular trip before it can be integrated into this model.

Placing this model within a broader context, a key question arises: how can traffic demand models in
general effectively incorporate the impacts of road capacity reductions? Current traffic models often lack
sufficient flexibility in their traffic demand functions to respond to incremental increases in travel time.
Future research should examine the effects of road capacity reductions across cities with varying urban
forms, cultural attitudes towards travel behaviour, and policy priorities. Furthermore, it is essential to
investigate how socio-economic factors and trip purposes influence traveller choices, providing insights
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for more adaptive traffic models. These two aspects are the first two steps in incorporating this into
models.

Turning to the findings derived from the model, further exploration is needed into the psychological
barriers that prevent individuals from switching to alternative modes for longer trips. Is it preferable to
encourage these travellers to maintain their current trips while switching modes, rather than altering
their destination, departure time or trip frequency? In addition to this question, are shorter trips more
likely to shift modes due to the quality and availability of cycling and public transport infrastructure,
or is trip length the primary determinant? Comparative studies across cities with differing levels of
infrastructure investment could investigate this. Additionally, the effects of combined interventions,
such as reducing road capacity while simultaneously investing in cycling paths and public transport,
need further examination. Similarly, the role of shared mobility options in shaping responses to road
capacity reductions presents an interesting area for investigation.

Finally, the findings of this thesis offer a foundation for exploring the equity dimensions of travel be-
haviour. Do individuals from different demographic groups respond similarly to road capacity reductions
or are certain groups disproportionately affected? This line of inquiry could contribute to the develop-
ment of more inclusive and equitable urban mobility policies, ensuring that the benefits of sustainable
transport systems are accessible to all.

8.5. Implications for practice
The model developed in this research provides policymakers with a valuable tool to estimate the effects
of road narrowing projects for the municipality of Rotterdam and other municipalities in the Netherlands.
Specifically, it allows for an accurate prediction of the new traffic equilibrium when road capacity is re-
duced. Unlike approaches that rely on predefined reduction factors for specific road links, this model
directly calculates the new equilibrium and estimates the number of car trips that need to be reduced
to avoid excessive congestion. By using these insights, municipalities can identify the percentage of
car trips that should ideally be reduced before the start of the capacity reduction. Combing this with
clear and early communication with road users, can shorten the adaptation period and mitigate signifi-
cant congestion during the initial phase of implementation. Additionally, the model highlights locations
where increased congestion may occur in the new equilibrium, enabling targeted traffic management
interventions.

Furthermore, the observed lasting behavioural changes after capacity was restored suggest an ad-
ditional opportunity for municipalities. By using these insights, policymakers can explore strategies
to maintain and support these shifts, potentially promoting a broader transition to sustainable travel
behaviours.

Finally, the study underscores the importance of integrating capacity reduction measures with improve-
ments to alternative travel modes, such as cycling and public transport. The findings reveal that specif-
ically shorter trips are likely to shift to these alternatives. This suggest that cities aiming to implement
road capacity reductions should simultaneously invest in enhancing local cycling infrastructure and
public transport network to encourage a shift in travel behaviour even more. Doing so can preserve
overall accessibility, even as road capacity is reduced.
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A
Code DiTra model

Below, the iterative process of the python code is shown.

A.1. Main code DiTra model
1 #!/usr/bin/env python
2 # coding: utf-8
3

4 # # DIsappearing TRAffic model (DiTra)
5

6 # Welcome to the DiTra model python file. This file can be used to run the model. Please read
the manual before starting the DiTra model. \

7 # This file is built up in the following way:\
8 # 0. Loading packages \
9 # 1. Setting filepaths and simulation configurations \

10 # 2. Loading necessary data \
11 # 3. Running simulation
12 #
13 # You are only suppose to make changes in Chapter 1. (Setting filepaths and simulation

configurations) and Section 2.2 (Loading affected OD pairs)
14

15 # ## 0. Loading packages
16

17 # The following cell loads the required data packages. Do not make changes. In case of errors
, please install the packages.

18

19 # In[1]:
20

21

22 import subprocess
23 import sqlite3
24 import time
25 import pandas as pd
26 import numpy as np
27 from scipy import stats
28 import matplotlib.pyplot as plt
29 from matplotlib.colors import LinearSegmentedColormap
30 from matplotlib.legend_handler import HandlerPathCollection
31 import DiTraFunctions as dtr
32

33

34 # ## 1. Setting filepaths and simulation configurations
35

36 # In the following cell, the filepaths and simulation configurations are set. **Change the
names to the correct paths and change the configuration names**. Keep the format (like r
''C:\) equal as the original settings.

37

38 # In[2]:
39

40

63
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41 # Define the path to the batch.exe file. This is the path to the map where you installed
Paramics and then select the batch.exe file

42 batch_exe_path = r"C:\Program␣Files␣(x86)\Paramics␣Microsimulation\Paramics␣Discovery␣
24.0.6\bin\batch.exe"

43

44 # Select the path to where you stored the model file (both base and intervention file).
45 model_path_base = r"C:\Users\Sande\Paramics\Basis␣model\Rotterdam.paramics" # the

model without intervention (normal Rotterdam case)
46 model_path_intervention = r"C:\Users\Sande\Paramics\Roseknoop␣phase␣1␣(full␣simulation)␣1\

Rotterdam_werkRoseknoopfase1.paramics" # the model with road capacity intervention
47

48 # Define file path where output is stored and run name (Do not add the '\log' here!)
49 output_file_base = r"C:\Users\Sande\Paramics\Basis␣model"
50 output_file_intervention = r"C:\Users\Sande\Paramics\Roseknoop␣phase␣1␣(full␣simulation)␣1"
51

52 # Select the run configuration which you want to simulate: Open the intervention model RODY
in paramics. The first run configuration in the list in the simulation tab corresponds to
the value 1. The second run configuration to the value 2 etc.

53 run_config_id = 1
54

55 # Define the run configuration name. This name should be fully identical to the Prefix name
in the simulation tab

56 run_config_name_base = 'AS_BASE_DEF_4'
57

58 # Define a run configuration name for the intervention ouput files
59 run_config_name_intervention = 'ERH_Phase1_final'
60

61

62 # **Optional: change PT travel time for directly affected OD pairs**
63

64 # In[3]:
65

66

67 increase_traveltime_PT = False # Set to True if you want to change the travel time for PT
trips for directly affected OD pairs

68 TT_PT_increase = 8 # min
69

70

71 # **Optional: reduce initial traffic demand**
72

73 # In[4]:
74

75

76 # Recommended if a large capacity reduction is introduced and risk of gridlock arises
77 reduce_initial_od_matrix = False # Set this value to True if you want to reduce the initial

traffic demand
78 reduction_directly_affected = 10 # [%] #Select the starting reduction of the DIRECTLY

affected OD pairs (as percentage)
79

80

81 # # 2. Loading necessary data
82

83 # **2.1 Setting parameters and making empty simulation output lists**
84

85 # This cell sets the parameter values and makes output lists. Do not change.
86

87 # In[5]:
88

89

90 # Coefficients for utility functions (made up for now)
91 ASC = {'car' : 0, 'bike' : 0.2501, 'PT' : -0.8451, 'no_trip'

: - 4.0132}
92

93 beta = {'car' : -0.0513, 'bike' : -0.0703, 'PT' : -0.0331, '
no_trip' : 0.1640, 'no_trip2': -0.002033, 'no_trip3': 0.93614, '
no_trip4': 0.00005126}

94

95 # Set the number of parallel RODY runs
96 runCount = 6
97

98 # Set the maximum number of iterations
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99 num_iterations = 6
100

101 # Set the threshold for the p-value of the KS-test
102 threshold_directly = 0.0252
103

104 # Storing lists of values affected travel times (x) and corresponding cdf level (y) for
directly and all affected od pairs respectively

105 x_cdf_directly = []
106 y_cdf_directly = []
107 x_cdf_indirectly = []
108 y_cdf_indirectly = []
109

110 # Storing lists of KS indicator per iteration
111 KS_iter_directly = []
112 KS_iter_indirectly = []
113 KS_base_directly = []
114 KS_base_indirectly = []
115

116 # Storing list of the number of cars that have disappeared
117 disappeared_cars = []
118

119 # Storing iterative OD split matrices
120 od_split_car_3d = []
121 od_split_bike_3d = []
122 od_split_pt_3d = []
123 od_split_notrip_3d = []
124

125

126 # **2.2 Loading affected OD pairs**
127

128 # The following two cells can be used to load the affected OD pair information. **Change file
paths**

129

130 # In[6]:
131

132

133 # File paths to directly and all affected OD pairs. Change to correct paths
134 path_directly_affected = 'Data/Affected␣OD␣pairs/directly_affected_od_phase_1␣od␣trip␣matrix.

csv'
135 path_all_affected = 'Data/Affected␣OD␣pairs/total_affected_od_phase_1␣od␣trip␣matrix.csv

'
136

137 # Loading information of directly affected OD pairs
138 od_affected_directly, od_affected_directly_values = dtr.affected_od_pairs(

path_directly_affected)
139

140 # Loading information of indirectly affected OD pairs
141 od_affected_all, od_affected_all_values = dtr.affected_od_pairs(path_all_affected)
142

143 # Setting the indirectly affected OD pairs
144 od_affected_indirectly = np.logical_and(od_affected_all, np.logical_not(od_affected_directly)

)
145

146

147 # Optional: if you did not manage to load all affected OD pairs in one run, you can use the
cell below to load them over different runs.

148

149 # In[7]:
150

151

152 # od_affected_all1, od_affected_all_values = affected_od_pairs('Data/total_affected_od_phase2
od trip matrix.csv')

153 # od_affected_all1, od_affected_all_values = affected_od_pairs('Data/
total_affected_od_phase2_1 od trip matrix.csv')

154 # od_affected_all2, od_affected_all_values = affected_od_pairs('Data/
total_affected_od_phase2_2 od trip matrix.csv')

155 # od_affected_all3, od_affected_all_values = affected_od_pairs('Data/
total_affected_od_phase2_3 od trip matrix.csv')

156 # od_affected_all4, od_affected_all_values = affected_od_pairs('Data/
total_affected_od_phase2_4 od trip matrix.csv')

157
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158 # od_affected_all = od_affected_all1 | od_affected_all2 | od_affected_all3 | od_affected_all4
| od_affected_directly

159 # od_affected_indirectly = np.logical_and(od_affected_all, np.logical_not(
od_affected_directly))

160

161

162 # **2.3 Loading od matrices and resistance matrices**
163

164 # The cell below loads all information required for the simulation. Do not change.
165

166 # In[8]:
167

168

169 # Load coplling V-MRDH to RODY
170 internal_zones, external_zones, copple_extern = dtr.load_coppling_extern_intern()
171

172 # Loading the original car matrix with internal RODY zones and external VMRDH zones (6101
x6101 matrix)

173 od_car_original_vmrdh = pd.read_csv('Data/OD␣matrices/
original_od_matrix_with_external_vmrdh_zones.csv', index_col = 0) # 6101 x 6101 matrix

174 od_car_original_vmrdh.columns = od_car_original_vmrdh.index
175

176 # Loading resistance matrices
177 od_distance_car, od_time_original_vmrdh , od_time_bike_vmrdh, od_time_pt_vmrdh,

od_utility_car_original , od_utility_bike, od_utility_pt, od_split_car_original ,
od_split_bike_original , od_split_pt_original , od_bike_original_vmrdh ,
od_pt_original_vmrdh , od_total_original, od_split_notrip_original = dtr.
loading_resistance_and_utility_matrices(ASC, beta, od_split_car_3d, od_split_bike_3d,
od_split_pt_3d, od_split_notrip_3d, od_car_original_vmrdh , TT_PT_increase,
increase_traveltime_PT , copple_extern, internal_zones, external_zones,
od_affected_directly)

178 od_time_original_vmrdh.columns = od_time_original_vmrdh.index
179

180 # Load the OD matrices which are not adjusted (na) (direct values from the 2h rush hour VMRDH
model)

181 od_car_original_vmrdh_na = pd.read_csv('Data/OD␣matrices/od_matrix_with_external_vmrdh_zones
␣(not␣adjusted).csv', index_col = 0) # 6101 x 6101 matrix

182 od_car_original_vmrdh_na.columns = od_car_original_vmrdh_na.index
183

184 od_bike_original_vmrdh_na = pd.read_csv('Data/OD␣matrices/
od_matrix_bike_with_external_vmrdh_zones␣(not␣adjusted).csv', index_col = 0) # 6101 x
6101 matrix

185 od_bike_original_vmrdh_na.columns = od_bike_original_vmrdh_na.index
186

187 od_pt_original_vmrdh_na = pd.read_csv('Data/OD␣matrices/
od_matrix_pt_with_external_vmrdh_zones␣(not␣adjusted).csv', index_col = 0) # 6101 x 6101
matrix

188 od_pt_original_vmrdh_na.columns = od_pt_original_vmrdh_na.index
189

190 # Calculate the modal split based on the not adjusted VMRDH 2h rush hour
191 od_split_car_original_vmrdh = od_car_original_vmrdh_na / (od_pt_original_vmrdh_na +

od_car_original_vmrdh_na + od_bike_original_vmrdh_na)
192 od_split_pt_original_vmrdh = od_pt_original_vmrdh_na / (od_pt_original_vmrdh_na +

od_car_original_vmrdh_na + od_bike_original_vmrdh_na)
193 od_split_bike_original_vmrdh = od_bike_original_vmrdh_na / (od_pt_original_vmrdh_na +

od_car_original_vmrdh_na + od_bike_original_vmrdh_na)
194 # Calculate the total number of trips (car, bike and pt) per od pair in the 4h RODY rush hour

based on the modal split
195

196

197 # Retrieve the original OD matrices from paramics model
198 zone_id, od_car_original = dtr.loading_od_matrix_original(model_path_base)
199

200 # Loading ratios of main highway and parallel lane
201 ratio_330_331 = od_car_original.loc[:, 330] / (od_car_original.loc[:, 330] + od_car_original

.loc[:, 331])
202 ratio_329_328 = od_car_original.loc[329, :] / (od_car_original.loc[329, :] + od_car_original

.loc[328, :])
203 ratio_270_269 = od_car_original.loc[270, :] / (od_car_original.loc[270, :] + od_car_original

.loc[269, :])
204
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205 # Setting the original matrices as iterative matrices (these will be updated; for 1st
iteration the original matrix will be used)

206 od_car_iterative = od_car_original.copy(deep=True)
207 od_car_iterative_vmrdh = od_car_original_vmrdh.copy(deep=True)
208 od_time_iterative_vmrdh = od_time_original_vmrdh.copy(deep=True)
209

210 # Adding the initial value for disappeared cars
211 if reduce_initial_od_matrix == False:
212 disappeared_cars.append(0)
213 if reduce_initial_od_matrix == True:
214 # Calculate the new OD matrix
215 od_car_reduced = dtr.reducing_od_matrix_start(od_car_original,

reduction_directly_affected , od_affected_directly)
216 # Add to disappeared cars list
217 disappeared_cars.append(od_car_reduced.sum().sum() - od_car_original.sum().sum())
218 # Calculate the new OD split matrix
219 od_split_car_0 = od_car_reduced / od_total_original
220 # Update the reduced OD matrix in the Paramics model
221 #dtr.update_od_matrix_in_model(od_affected_all, od_matrix_new, zone_id,

model_path_intervention)
222

223

224 # # 3. Running simulation
225

226 # In the following cells, the DiTra model is started. The first cell loads the information
from the base run. The second cell starts the iterative process of traffic simulation and
recalculation of the OD matrix. Do not make changes.

227

228 # In[9]:
229

230

231 # Loading the travel time matrix for the base run (normal Rotterdam model)
232 od_time_baserun = dtr.od_travel_times_sim(output_file_base, run_config_name_base , 99)
233

234 # Computing the first results of the congestion indicator
235 dtr.congestion_indicator(od_affected_directly , od_affected_all, od_time_baserun,

x_cdf_directly, y_cdf_directly, x_cdf_indirectly, y_cdf_indirectly, KS_iter_directly,
KS_iter_indirectly, KS_base_directly, KS_base_indirectly)

236

237

238 # In[10]:
239

240

241 # Main loop to run simulations and update OD matrix
242 num_iterations = 6
243 for iteration in range(1, num_iterations):
244 if iteration == 1:
245 print(f"Starting␣iteration␣1:␣original␣OD␣matrix␣applied␣to␣the␣model␣with␣the␣

capacity␣intervention")
246 else:
247 print(f"Starting␣iteration␣{iteration}")
248 print('')
249

250 # Start the traffic assignment simulation
251 #dtr.run_all_simulations(batch_exe_path, runCount, output_file_intervention ,

run_config_name_intervention , iteration, model_path_intervention)
252

253 # Retrieve OD travel time matrix for car trips from simulation
254 od_time_iterative_sim = dtr.od_travel_times_sim(output_file_intervention ,

run_config_name_intervention , iteration)
255

256 # Calculate congestion indicator based on the travel times of last simulation
257 dtr.congestion_indicator(od_affected_directly , od_affected_all, od_time_iterative_sim ,

x_cdf_directly, y_cdf_directly, x_cdf_indirectly, y_cdf_indirectly, KS_iter_directly,
KS_iter_indirectly, KS_base_directly, KS_base_indirectly)

258

259 # Plot the congestion indicator output
260 dtr.plot_cdf_and_KS(x_cdf_directly, y_cdf_directly, x_cdf_indirectly, y_cdf_indirectly,

KS_iter_directly, KS_iter_indirectly, KS_base_directly, KS_base_indirectly,
disappeared_cars, threshold_directly)

261 plt.show()
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262

263 # Check if new iteration is required
264 if (len(KS_iter_directly) == 0):
265 if KS_base_directly[0][0] < threshold_directly:
266 print(f'KS␣value␣between␣base␣and␣iteration␣is␣{KS_base_directly[0][0]:.3f}␣(

lower␣than␣the␣threshold␣of␣{threshold_directly})')
267 print('This␣means␣that␣the␣travel␣times␣through␣the␣area␣has␣not␣changed␣

signficantly.␣' 'The␣intervention␣has␣not␣increased␣the␣
congestion.␣No␣significant␣change␣in␣behaviour␣will␣occur.')

268 break
269 else:
270 print(f'KS␣value␣between␣base␣and␣iteration␣1␣is␣{KS_base_directly[0][0]:.3f}␣(

higher␣than␣the␣threshold␣of␣{threshold_directly})')
271 print('The␣travel␣times␣are␣significantly␣changed␣due␣to␣the␣intervention.␣'

'People␣will␣start␣adapting␣their␣behaviour.␣')
272 print('␣The␣OD␣matrix␣will␣be␣recalculated␣and␣a␣new␣iteration␣will␣start.')
273

274 else:
275 if KS_iter_directly[-1][0] < threshold_directly:
276 print(f'KS␣value␣=␣{KS_iter_directly[-1][0]:.3f}␣<␣{threshold_directly}.')
277 print('New␣equilibrium␣has␣found!␣Iteration␣will␣stop.␣The␣OD␣matrix␣will␣be␣

recalculated␣for␣final␣results.')
278 # Recalculate OD matrix
279 od_split_car, od_car_iterative_vmrdh , od_utility_car, od_bike_new_vmrdh,

od_pt_new_vmrdh, od_notrip_new_vmrdh, od_time_iterative_vmrdh = dtr.
recalculating_od_matrix(od_car_original_vmrdh , od_car_iterative_vmrdh ,
od_total_original, od_time_original_vmrdh , od_time_baserun,
od_time_iterative_sim , ASC, beta, od_affected_all, od_utility_car_original ,
od_utility_bike, od_utility_pt, od_split_bike_original , od_split_pt_original ,
od_split_car_3d, od_split_bike_3d, od_split_pt_3d, od_split_notrip_3d,

internal_zones, external_zones, copple_extern,od_time_iterative_vmrdh ,
od_distance_car, disappeared_cars)

280 od_matrix_new = dtr.aggregate_od_matrix(od_car_iterative_vmrdh , od_car_original,
internal_zones, external_zones, copple_extern, ratio_330_331, ratio_329_328,
ratio_270_269)

281 print('-------------------------------------------------------')
282 print(f'Final␣result␣in␣change␣in␣travel␣behaviour:')
283 print('')
284 print(f'Total␣reduction␣of␣{od_car_original.sum().sum()␣-␣od_matrix_new.sum().sum

():.00f}␣car␣trips␣(compared␣to␣base␣scenario)')
285 print('')
286 print(f'Reduction␣of␣{(od_car_original[od_affected_directly].sum().sum()␣-␣

od_matrix_new[od_affected_directly].sum().sum()):.0f}␣car␣trips␣directly␣
hindered␣({(od_car_original[od_affected_directly].sum().sum()␣-␣od_matrix_new
[od_affected_directly].sum().sum())/od_car_original[od_affected_directly].sum
().sum()*100:.02f}%␣of␣all␣directly␣hindered␣trips␣in␣evening␣rush␣hour)')

287 print(f'Reduction␣of␣{(od_car_original[od_affected_indirectly].sum().sum()␣-␣
od_matrix_new[od_affected_indirectly].sum().sum()):.0f}␣car␣trips␣indirectly␣
hindered␣({(od_car_original[od_affected_indirectly].sum().sum()␣-␣
od_matrix_new[od_affected_indirectly].sum().sum())/od_car_original[
od_affected_indirectly].sum().sum()*100:.02f}%␣of␣all␣indirectly␣hindered␣
trips␣in␣evening␣rush␣hour)')

288 print('')
289 print(f'This␣is␣a␣reduction␣of␣{(od_car_original.sum().sum()␣-␣od_matrix_new.sum

().sum())/od_car_original[od_affected_directly].sum().sum()*100:.02f}%␣of␣car
␣trips␣going␣over␣intervening␣road')

290 print('')
291 print(f'{od_bike_new_vmrdh.sum().sum()␣-␣od_bike_original_vmrdh.sum().sum():.00f}

␣people␣shifted␣to␣bike')
292 print(f'{od_pt_new_vmrdh.sum().sum()␣-␣od_pt_original_vmrdh.sum().sum():.00f}␣

people␣shifted␣to␣pt')
293 print(f'{od_notrip_new_vmrdh.sum().sum():.00f}␣people␣moved␣away␣from␣Roseknoop␣

area␣in␣evening␣rush␣hour')
294 break
295 else:
296 print(f'KS␣value␣=␣{KS_iter_directly[-1][0]:.3f}␣>␣{threshold_directly}.')
297 print(f'The␣simulation␣has␣not␣reached␣a␣new␣equilibrium.␣The␣OD␣matrix␣will␣be␣

recalculated␣and␣iteration␣{iteration}␣will␣start.')
298

299 print('')
300
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301 # Recalculate OD matrix
302 od_split_car, od_car_iterative_vmrdh , od_utility_car, od_bike_new_vmrdh, od_pt_new_vmrdh,

od_notrip_new_vmrdh , od_time_iterative_vmrdh = dtr.recalculating_od_matrix(
od_car_original_vmrdh , od_car_iterative_vmrdh , od_total_original,
od_time_original_vmrdh , od_time_baserun, od_time_iterative_sim , ASC, beta,
od_affected_all, od_utility_car_original , od_utility_bike, od_utility_pt,
od_split_bike_original , od_split_pt_original , od_split_car_3d, od_split_bike_3d,
od_split_pt_3d, od_split_notrip_3d, internal_zones, external_zones, copple_extern,
od_time_iterative_vmrdh , od_distance_car, disappeared_cars)

303

304 # Aggregate the new 6101x6101 OD matrix to RODY format (371x371)
305 od_matrix_new = dtr.aggregate_od_matrix(od_car_iterative_vmrdh , od_car_original,

internal_zones, external_zones, copple_extern, ratio_330_331, ratio_329_328,
ratio_270_269)

306

307 print(f'Next␣simulation␣will␣have␣{od_matrix_new.sum().sum():.0f}␣car␣trips')
308 print(f'Total␣reduction␣of␣{od_car_original.sum().sum()␣-␣od_matrix_new.sum().sum():.00f}

␣car␣trips␣(compared␣to␣base␣scenario)')
309 print('')
310 print(f'Reduction␣of␣{(od_car_original[od_affected_directly].sum().sum()␣-␣od_matrix_new[

od_affected_directly].sum().sum()):.0f}␣car␣trips␣directly␣hindered␣({(
od_car_original[od_affected_directly].sum().sum()␣-␣od_matrix_new[
od_affected_directly].sum().sum())/od_car_original[od_affected_directly].sum().sum()
*100:.02f}%␣of␣all␣directly␣hindered␣trips␣in␣evening␣rush␣hour)')

311 print(f'Reduction␣of␣{(od_car_original[od_affected_indirectly].sum().sum()␣-␣
od_matrix_new[od_affected_indirectly].sum().sum()):.0f}␣car␣trips␣indirectly␣hindered
␣({(od_car_original[od_affected_indirectly].sum().sum()␣-␣od_matrix_new[
od_affected_indirectly].sum().sum())/od_car_original[od_affected_indirectly].sum().
sum()*100:.02f}%␣of␣all␣indirectly␣hindered␣trips␣in␣evening␣rush␣hour)')

312 print('')
313 print(f'This␣is␣a␣reduction␣of␣{(od_car_original.sum().sum()␣-␣od_matrix_new.sum().sum())

/od_car_original[od_affected_directly].sum().sum()*100:.02f}%␣of␣car␣trips␣going␣over
␣intervening␣road')

314 print('')
315 print(f'{od_bike_new_vmrdh.sum().sum()␣-␣od_bike_original_vmrdh.sum().sum():.00f}␣people␣

shifted␣to␣bike')
316 print(f'{od_pt_new_vmrdh.sum().sum()␣-␣od_pt_original_vmrdh.sum().sum():.00f}␣people␣

shifted␣to␣pt')
317 print(f'{od_notrip_new_vmrdh.sum().sum():.00f}␣people␣moved␣away␣from␣Roseknoop␣area␣in␣

evening␣rush␣hour')
318

319 # Update the OD matrix in the .paramics intervention file
320 #dtr.update_od_matrix_in_model(od_affected_all, od_matrix_new, zone_id,

model_path_intervention)
321

322 print('')
323 print(f"Completed␣iteration␣{iteration}")
324 print('')
325 print('-------------------------------------------------------')
326 print('')
327 print("All␣iterations␣completed.")
328

329

330 # In[ ]:

A.2. Code functions for DiTra model
1 import subprocess
2 import sqlite3
3 import time
4 import pandas as pd
5 import numpy as np
6 from scipy import stats
7 import matplotlib.pyplot as plt
8 from matplotlib.colors import LinearSegmentedColormap
9 from matplotlib.legend_handler import HandlerPathCollection

10

11

12 def loading_od_matrix_original(model_path_base):
13 """
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14 Loads the original OD matrix from the base paramics model
15

16 Parameters:
17 model_path_base (string): text line to indicate where the paramics base model is

stored
18

19 Returns:
20 zone_id (array) : the id numbers paramics uses for the zones
21 od_car_original (DataFrame) : the original OD matrix for car trips applied in the

base scenario
22

23 """
24 # Retrieve demandZones table from SQLite-database
25 conn = sqlite3.connect(model_path_base) # Connect to the SQLite-database
26 query = "SELECT␣*␣FROM␣demandZones" # Retrieve the demandZones table data
27 demand_zones = pd.read_sql_query(query, conn) # Set demandZones table into dataframe
28 conn.close() # close connection
29

30 # Retrieve SQLite-id for zones in the model
31 zone_id = demand_zones['originZoneId'].unique()
32

33 # Selecting Evening Peak demand
34 demand_zones_ep = demand_zones[(demand_zones['demandId'] == 4) & (demand_zones['matrixId'

] == 0)]
35

36 # Transforming demandZone table into Origin-Destination matrix and setting zone labels
37 od_car_original = demand_zones_ep.pivot_table(index='originZoneId', columns='destZoneId',

values='demand', fill_value=0)
38 od_car_original = od_car_original.reindex(index=zone_id, columns=zone_id, fill_value=0)
39 od_car_original.index = np.arange(1, 372, 1)
40 od_car_original.columns = np.arange(1, 372, 1)
41

42 return zone_id, od_car_original
43

44

45

46

47 # Function to load the orginal resistance matrices for car and other modalities from the
Resistance map (retrieved from V-MRDH)

48 def loading_resistance_and_utility_matrices(ASC, beta, od_split_car_3d, od_split_bike_3d,
od_split_pt_3d, od_split_notrip_3d, od_car_original_vmrdh , TT_PT_increase,
increase_traveltime_PT , copple_extern, internal_zones, external_zones,
od_affected_directly):

49 """
50 Loads the original resistance matrices for car, bike and PT
51 and calculates the utility, model split and OD matrices for all alternatives
52

53 Parameters:
54 ASC (dictionary) : dictionary with ASC values for alternatives
55 beta (dictionary) : dictionary with beta values for alternatives
56 od_split_car_3d (list) : OD split matrix for car for storing all iterations
57 od_split_bike_3d (list) : OD split matrix for car for storing all iterations
58 od_split_pt_3d (list) : OD split matrix for car for storing all iterations
59 od_split_notrip_3d (list) : OD split matrix for car for storing all iterations
60

61 Returns:
62 od_time_original_vmrdh (DataFrame): OD travel time matrix for car
63 od_distance_car (DataFrame): OD car distance matrix
64 od_time_bike_vmrdh (DataFrame): OD travel time matrix for bike
65 od_time_pt_vmrdh (DataFrame): OD travel time matrix for PT
66 od_utility_car_original (DataFrame): OD utility matrix for car
67 od_utility_bike (DataFrame): OD utility matrix for bike
68 od_utility_pt (DataFrame): OD utility matrix for PT
69 od_split_car_original (DataFrame): OD split matrix for car
70 od_split_bike_original (DataFrame): OD split matrix for bike
71 od_split_pt_original (DataFrame): OD split matrix for PT
72 od_total_original (DataFrame): OD trip matrix for all alternatives
73 od_bike_original_vmrdh (DataFrame): OD trip matrix for bike
74 od_pt_original_vmrdh (DataFrame): OD trip matrix for PT
75 """
76 # Loading original resistance matrices for car
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77 od_time_original_vmrdh = pd.read_csv('Data/Resistance␣matrices/
od_time_car_rody_with_vmrdh_zones.csv', delimiter=',', index_col= 0)

78 od_time_original_vmrdh.columns = od_time_original_vmrdh.columns.astype('int')
79

80 # Loading car distance matrix
81 od_distance_car = pd.read_csv('Data/Resistance␣matrices/

od_distance_car_rody_with_vmrdh_zones.csv', delimiter=',', index_col= 0)
82 od_distance_car.columns = od_distance_car.columns.astype('int')
83

84 # Loading original resistance matrix for bike
85 od_time_bike_vmrdh = pd.read_csv('Data/Resistance␣matrices/

od_time_bike_rody_with_vmrdh_zones.csv', delimiter=',', index_col= 0)
86 od_time_bike_vmrdh.columns = od_time_bike_vmrdh.columns.astype('int')
87

88 # Loading original resistance matrix for public transport
89 od_time_pt_vmrdh = pd.read_csv('Data/Resistance␣matrices/

od_time_pt_rody_with_vmrdh_zones.csv', delimiter=',', index_col= 0)
90 od_time_pt_vmrdh.columns = od_time_pt_vmrdh.columns.astype('int')
91

92 # Calculating original utility matrices
93 od_utility_car_original = ASC['car'] + beta['car'] * od_time_original_vmrdh
94 od_utility_bike = ASC['bike'] + beta['bike'] * od_time_bike_vmrdh
95 od_utility_pt = ASC['PT'] + beta['PT'] * od_time_pt_vmrdh
96 # Calculating the original utility matrix for notrip (which is all -999)
97 delta_T = od_time_original_vmrdh - od_time_original_vmrdh
98 od_utility_notrip_original = np.where(delta_T < 0, -999,
99 ASC['no_trip'] + beta['no_trip'] * od_distance_car + beta['no_trip2'] *

od_distance_car**2 + \
100 beta['no_trip3'] * np.log(beta['no_trip4'] + delta_T / (

od_time_original_vmrdh)))
101

102 # Calculate total utility
103 od_utility_total = np.exp(od_utility_car_original) + np.exp(od_utility_bike) + np.exp(

od_utility_pt)
104

105 # Calculate the updated utility (do not change this cell)
106 if increase_traveltime_PT == True:
107 od_utility_pt = change_PT_traveltime(od_time_pt_vmrdh, od_affected_directly ,

copple_extern, internal_zones, external_zones, ASC, beta, TT_PT_increase)
108

109 # Calculating od_split_car based on utility functions
110 od_split_car_original = np.round(np.exp(od_utility_car_original) / od_utility_total

, decimals = 6)
111 od_split_bike_original = np.round(np.exp(od_utility_bike) / od_utility_total

, decimals = 6)
112 od_split_pt_original = np.round(np.exp(od_utility_pt) / od_utility_total

, decimals = 6)
113 od_split_notrip_original = np.round(np.exp(od_utility_notrip_original) / od_utility_total

, decimals = 2)
114

115 od_split_car_3d.append(od_split_car_original)
116 od_split_bike_3d.append(od_split_bike_original)
117 od_split_pt_3d.append(od_split_pt_original)
118 od_split_notrip_3d.append(od_split_notrip_original)
119

120 # Calculating original total matrix based on od_split_car_original
121 od_total_original = od_car_original_vmrdh / od_split_car_original
122

123 # Calculating the original OD matrix for bike and PT
124 od_bike_original_vmrdh = od_split_bike_original * od_total_original
125 od_pt_original_vmrdh = od_split_pt_original * od_total_original
126 od_notrip_original_vmrdh = od_split_notrip_original * od_total_original
127

128 return od_distance_car, od_time_original_vmrdh , od_time_bike_vmrdh, od_time_pt_vmrdh,
od_utility_car_original , od_utility_bike, od_utility_pt, od_split_car_original ,
od_split_bike_original , od_split_pt_original , od_bike_original_vmrdh ,
od_pt_original_vmrdh , od_total_original, od_split_notrip_original

129

130

131 def affected_od_pairs(filepath_affected_od):
132 """
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133 Loads the OD pair files which are affected by the road capacity intervention
134

135 Parameters:
136 filepath_affected_od (string): text line to indicate where the affected od pair file

is stored
137

138 Returns:
139 od_affected_bool (DataFrame) : OD matrix with True values for affected OD pairs and

False for unaffected OD pairs
140 od_affected (DataFrame) : OD matrix with the OD values for only the affected OD

pairs
141 """
142 od_affected = pd.read_csv(filepath_affected_od , delimiter=',', index_col= 1)
143 od_affected = od_affected.drop(['Matrix␣Number'], axis=1)
144 od_affected.columns = od_affected.index
145 od_affected_bool = od_affected.astype(bool)
146 return od_affected_bool, od_affected
147

148

149 # Function to run the simulation
150 def run_simulation(batch_exe_path, runNumber, runCount, database_path, logDir, model_path):
151 """
152 Starts the simulation for one particular run
153 Parameters:
154 runNumber (int) : ID number for one parallel run
155 runCount (int) : the total number of parallel runs of one iteration
156 database_path (string) : path to database location on computer
157 logDir (string) : path to storage location of one parallel run
158 model_path (string) : path to location of Paramics model
159

160 Returns:
161 process: runs an individual parallel run of an iteration
162 """
163 cmd = f'"{batch_exe_path}"␣"{model_path}"␣--runConfigId␣1␣--logDir␣"{logDir}"␣--runNumber

␣{runNumber}␣--runCount␣{runCount}␣--statisticsFileName␣"{database_path}"␣--
groupRunTemporaryFileName␣"randomtempname"␣'

164 #print('model path:', cmd)
165 process = subprocess.Popen(cmd, shell=True)
166 return process
167

168

169 def run_all_simulations(batch_exe_path, runCount, output_file, run_config_name, iteration,
model_path):

170 """
171 Starts the simulation for a set of parallel runs
172

173 Parameter:
174 run_Count (int) : the total number of parallel runs of one iteration
175 output_file (string) : path to file where output is stored
176 run_config_name (string) : name of the simulation configuration
177 iteration (int) : the iteration number
178 model_path (string) : path to location of paramics model
179 Returns:
180 process: runs all the parallel runs of an iteration
181 """
182 # Set an empty list to store the processes
183 processes = []
184

185 # Set the database path based on the run_config_name
186 database_path = f'{output_file}\\log\\{run_config_name}_{iteration}.sqlite3'
187 #print('database_path', database_path)
188 # Loop over the runNumbers and start the Paramics simulation
189 for runNumber in range(1, runCount + 1):
190 # Set the Directory for the individual run output
191 logDir = f'{output_file}\\log\\{run_config_name}_iteration{iteration}_run{runNumber}'
192 # Start the simulation
193 processes.append(run_simulation(batch_exe_path, runNumber, runCount, database_path,

logDir, model_path))
194 time.sleep(1)
195 # Wait for all processes to be ready before continuing
196 for process in processes:
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197 process.wait()
198

199 def od_travel_times_sim(output_file, run_config_name, iteration):
200 """
201 Function to load the travel times from the output file from the RODY simulation
202

203 Parameters:
204 output_file (string) : text line to indicate where the output file is stored
205 run_config_name (string) : text line with the configuration name as in the Paramics

model
206 iteration (int) : the iteration number
207

208 Returns:
209 od_travel_times (DataFrame): OD matrix (371 x 371) with the average travel times per

OD pair
210 """
211 # Retrieve the tripsAll data with the travel times per trip
212 if iteration == 99:
213 conn = sqlite3.connect(f'{output_file}\\log\\{run_config_name}.sqlite3') # Connect

to the SQLite-database
214 else:
215 cmd = f'{output_file}\\log\\{run_config_name}_{iteration}.sqlite3'
216 conn = sqlite3.connect(cmd)
217 query = "SELECT␣*␣FROM␣tripsAll" #

Retrieve the tripsAll table data
218 all_trips = pd.read_sql_query(query, conn) #

Set tripsAll into dataframe
219 conn.close() #

Close connection
220

221 # Calculate the OD matrix travel times (in minutes) (fill-up and cool down hours removed)
222 all_trips.index = all_trips['departureTime']
223 all_trips_ph = all_trips[(all_trips.index > 15 * 3600) & (all_trips.index < 18 * 3600)]
224 od_avg_travel_times = all_trips_ph.groupby(['fromZone', 'toZone'])['timeTaken'].mean().

reset_index()
225 od_travel_times = od_avg_travel_times.pivot(index='fromZone', columns='toZone', values='

timeTaken')
226

227 #Adding zones which are currently missing in the matrix
228 all_zones = list(range(1, 372))
229 od_travel_times = od_travel_times.reindex(index=all_zones, columns=all_zones)
230

231 # Transform travel times from seconds to minutes
232 od_travel_times = od_travel_times / 60
233

234 return od_travel_times
235

236

237

238 def congestion_indicator(od_affected_directly , od_affected_all, od_travel_times,
x_cdf_directly, y_cdf_directly, x_cdf_indirectly, y_cdf_indirectly, KS_iter_directly,
KS_iter_indirectly, KS_base_directly, KS_base_indirectly):

239 """
240 Function to calculate the KS value as congestion indicator
241

242 Parameters:
243 od_affected_directly (DataFrame) : 371 x 371 Boolean matrix with values True for

directly affected OD pairs and False not directly
affected OD pair

244 od_affected_all (DataFrame) : 371 x 371 matrix matrix with values True for all
affected OD pairs and False not affected OD

pair
245 od_travel_times (DataFrame) : 371 x 371 matrix with the travel times from the

last simulation
246 x_cdf_directly (array) : sorted travel times from small to large of

directly affected OD pairs
247 y_cdf_directly (array) : corresponding CDF value of travel times in

x_cdf_directly of directly affected OD pairs
248 x_cdf_indirectly (array) : sorted travel times from small to large of

indirectly affected OD pairs
249 y_cdf_indirectly (array) : corresponding CDF value of travel times in
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x_cdf_indirectly of indirectly affected OD pairs
250 KS_iter_directly (array) : KS values between last two CDFs of iterations for

directly affected OD pairs
251 KS_iter_indirectly (array) : KS values between last two CDFs of iterations for

indirectly affected OD pairs
252 KS_base_directly (array) : KS values between CDF last iteration and base

scenario for directly affected OD pairs
253 KS_base_indirectly (array) : KS values between CDF last iteration and base

scenario for indirectly affected OD pairs
254 Returns:
255 Updated KS and CDF values in stored arrays
256 """
257 # For directly affected OD pairs:
258 # Make a 1d array of travel times for affected od pairs
259 od_travel_times_affected = od_travel_times[od_affected_directly].values.flatten()
260 od_travel_times_affected = od_travel_times_affected[~np.isnan(od_travel_times_affected)]
261

262 # Sorting the data, calculating CDF and appending to list
263 od_travel_times_affected = np.sort(od_travel_times_affected)
264 cdf = np.arange(1, len(od_travel_times_affected) + 1) / len(od_travel_times_affected)
265 x_cdf_directly.append(od_travel_times_affected)
266 y_cdf_directly.append(cdf)
267

268 # Calculating the KS-stat if there are at least two iterations done
269 if len(x_cdf_directly) > 2:
270 ks_stat = stats.ks_2samp(x_cdf_directly[-2],x_cdf_directly[-1])
271 KS_iter_directly.append(ks_stat)
272

273 # Calculating the KS-stat between base and current iteration
274 if len(x_cdf_directly) > 1:
275 ks_stat = stats.ks_2samp(x_cdf_directly[0],x_cdf_directly[-1])
276 KS_base_directly.append(ks_stat)
277

278 # For indirectly affected OD pairs:
279 od_affected_indirectly = np.logical_and(od_affected_all, np.logical_not(

od_affected_directly))
280

281 # Make a 1d array of travel times for affected od pairs
282 od_travel_times_affected = od_travel_times[od_affected_indirectly].values.flatten()
283 od_travel_times_affected = od_travel_times_affected[~np.isnan(od_travel_times_affected)]
284

285 # Sorting the data and calculating CDF
286 od_travel_times_affected = np.sort(od_travel_times_affected)
287 x_cdf_indirectly.append(od_travel_times_affected)
288 cdf = np.arange(1, len(od_travel_times_affected) + 1) / len(od_travel_times_affected)
289 y_cdf_indirectly.append(cdf)
290

291 # Calculating the KS-stat between previous and current iteration
292 if len(x_cdf_indirectly) > 2:
293 ks_stat = stats.ks_2samp(x_cdf_indirectly[-2],x_cdf_indirectly[-1])
294 KS_iter_indirectly.append(ks_stat)
295

296 # Calculating the KS-stat between base and current iteration
297 if len(x_cdf_indirectly) > 1:
298 ks_stat = stats.ks_2samp(x_cdf_indirectly[0],x_cdf_indirectly[-1])
299 KS_base_indirectly.append(ks_stat)
300 return
301

302

303 def plot_cdf_and_KS(x_cdf_directly, y_cdf_directly, x_cdf_indirectly, y_cdf_indirectly,
KS_iter_directly, KS_iter_indirectly, KS_base_directly, KS_base_indirectly,
disappeared_cars, threshold_directly):

304 """
305 Function to plot the travel time CDF's and print the KS values calculated in the

congestion_indicator() function
306

307 Parameters:
308 x_cdf_directly (array) : sorted travel times from small to large of

directly affected OD pairs
309 y_cdf_directly (array) : corresponding CDF value of travel times in

x_cdf_directly of directly affected OD pairs
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310 x_cdf_indirectly (array) : sorted travel times from small to large of
indirectly affected OD pairs

311 y_cdf_indirectly (array) : corresponding CDF value of travel times in
x_cdf_indirectly of indirectly affected OD pairs

312 KS_iter_directly (array) : KS values between last two CDFs of iterations for
directly affected OD pairs

313 KS_iter_indirectly (array) : KS values between last two CDFs of iterations for
indirectly affected OD pairs

314 KS_base_directly (array) : KS values between CDF last iteration and base
scenario for directly affected OD pairs

315 KS_base_indirectly (array) : KS values between CDF last iteration and base
scenario for indirectly affected OD pairs

316 disappeared_cars (array) : stored reduction of car trips applied in each
iteration

317 threshold_directly (float) : threshold KS value to indicate when the iteration
stops

318 """
319 # Get the number of iterations (excluding the base scenario)
320 num_iterations = len(x_cdf_directly) - 1
321 max_iterations = 5 # Max 6 iterations
322

323 # Adjust the range for the colormap to get lighter blue for the first iteration
324 start_color = 0.2 # Start from a lighter blue (adjustable value)
325 end_color = 1.2 # End with a dark blue
326

327 # Get the KS value (compared to base scenario)
328 KS_value_base_indirectly = []
329 KS_value_base_directly = []
330 for i in range(num_iterations):
331 KS_value_base_indirectly.append(KS_base_indirectly[i][0])
332 KS_value_base_directly.append(KS_base_directly[i][0])
333

334 # Get the KS value (compared to previous iterations)
335 KS_value_iter_indirectly = []
336 KS_value_iter_directly = []
337 for i in range(num_iterations -1):
338 KS_value_iter_indirectly.append(KS_iter_indirectly[i][0])
339 KS_value_iter_directly.append(KS_iter_directly[i][0])
340 iteration_list = list(range(0, num_iterations))
341 iteration_list_diff = list(range(1, num_iterations))
342

343 # Set figure size and color map
344 plt.figure(figsize=(14, 14))
345 cmap = plt.get_cmap("Blues")
346

347 # Plot the KS values of the directly affected OD pairs
348 plt.subplot(221)
349 plt.plot(iteration_list, KS_value_base_directly , marker = 'o', color = 'steelblue', lw

=1.7, linestyle= '-.', label = 'Compared␣to␣base')
350 plt.plot(iteration_list_diff , KS_value_iter_directly , marker = 'o', color = 'steelblue',

linestyle= '-', label = 'Compared␣to␣previous␣simulation')
351 plt.axhline(threshold_directly, color = 'grey', ls = '--')
352

353 custom_handles = [
354 plt.Line2D([], [], color='steelblue', linestyle='-.', label='Compared␣to␣base'),
355 plt.Line2D([], [], color='steelblue', linestyle='-', label='Compared␣to␣previous␣

simulation'),
356 plt.Line2D([], [], color='grey', linestyle='--', label='Threshold␣directly')]
357 plt.legend(handles=custom_handles, fontsize=13)
358 plt.xticks(iteration_list)
359 plt.title('KS␣values␣for␣directly␣affected␣OD␣pairs')
360 plt.xlabel('Iterations')
361 plt.ylabel('KS␣value')
362 plt.ylim(0, KS_value_base_directly[0] * 1.4)
363 plt.grid()
364

365 # Plot the KS values of the indirectly affected OD pairs
366 plt.subplot(222)
367 plt.plot(iteration_list, KS_value_base_indirectly , marker = 'o', color = 'steelblue', lw

=1.7, linestyle= '-.',label = 'Compared␣to␣base')
368 plt.plot(iteration_list_diff , KS_value_iter_indirectly , marker = 'o', color = 'steelblue'
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,linestyle= '-',label = 'Compared␣to␣previous␣simulation')
369

370 plt.title('KS␣values␣for␣indirectly␣affected␣OD␣pairs')
371 plt.xlabel('Iterations')
372 plt.ylabel('KS␣value')
373 custom_handles = [
374 plt.Line2D([], [], color='steelblue', linestyle='-.', label='Compared␣to␣base'),
375 plt.Line2D([], [], color='steelblue', linestyle='-', label='Compared␣to␣previous␣

simulation'),
376 plt.Line2D([], [], color='grey', linestyle='--', label='Threshold␣indirectly')]
377 plt.legend(handles=custom_handles, fontsize=13)
378 plt.xticks(iteration_list)
379 plt.ylim(0, KS_value_base_directly[0] * 1.4)
380 plt.grid()
381

382 # Plot the CDF graphs of the travel time for directly affected OD pairs
383 plt.subplot(223)
384 plt.plot(x_cdf_directly[0], y_cdf_directly[0], marker=".", linestyle="none", markersize =

0.3, color ="grey", label = "base␣scenario")
385 for i in range(1, num_iterations + 1):
386 color = cmap(start_color + (end_color - start_color) * (i - 1) / (max_iterations - 1)

)
387 plt.plot(x_cdf_directly[i], y_cdf_directly[i], marker=".", linestyle="none",

markersize=0.3, color=color, label=f'Iteration␣{i}:␣{disappeared_cars[i-1]:.0f}␣
vehicles')

388

389 plt.title('Travel␣time␣CDF␣of␣directly␣affected␣OD␣pairs')
390 plt.xlabel('Travel␣time␣[min]')
391 plt.ylabel('CDF')
392 plt.xlim(0, x_cdf_directly[1].max() * 2/3)
393 legend = plt.legend(markerscale=10)
394 plt.grid(True)
395

396 # Plot the CDF graphs of the travel time for indirectly affected OD pairs
397 plt.subplot(224)
398 plt.plot(x_cdf_indirectly[0], y_cdf_indirectly[0], marker=".", linestyle="none",

markersize = 0.3, color ="grey", label = "base␣scenario")
399 for i in range(1, num_iterations + 1):
400 color = cmap(start_color + (end_color - start_color) * (i - 1) / (max_iterations - 1)

)
401 plt.plot(x_cdf_indirectly[i], y_cdf_indirectly[i], marker=".", linestyle="none",

markersize=0.3, color=color, label=f'Iteration␣{i}')
402

403 plt.title('Travel␣time␣CDF␣of␣indirectly␣affected␣OD␣pairs')
404 plt.xlabel('Travel␣time␣[min]')
405 plt.ylabel('CDF')
406 plt.xlim(0, x_cdf_indirectly[1].max() * 2 / 3 )
407 legend = plt.legend(markerscale=10, loc = 'lower␣right')
408 plt.grid(True)
409 plt.show()
410

411 # Print the KS values
412 print('KS␣values␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣Directly␣␣␣␣␣␣␣␣␣␣␣Indirectly')
413 print('␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣Affected␣pairs␣␣␣␣␣Affected␣pairs')
414

415 for i in range(len(KS_base_directly)):
416 print(f'Base␣-␣Iteration␣{i+1}␣␣␣␣␣␣{KS_base_directly[i][0]:.3f}␣␣␣␣␣␣␣␣␣␣␣␣␣␣{

KS_base_indirectly[i][0]:.3f}␣␣␣␣␣')
417 print('')
418 for i in range(len(KS_iter_directly)):
419 print(f'Iteration␣{i+1}␣-␣{i+2}␣␣␣␣␣␣␣␣␣{KS_iter_directly[i][0]:.3f}␣␣␣␣␣␣␣␣␣␣␣␣␣␣{

KS_iter_indirectly[i][0]:.3f}␣␣␣')
420

421

422

423 def recalculating_od_matrix(od_car_original_vmrdh , od_car_iterative_vmrdh , od_total_original,
od_time_original_vmrdh , od_time_baserun, od_time_iterative_sim , ASC, beta,

od_affected_all, od_utility_car_original , od_utility_bike, od_utility_pt,
od_split_bike_original , od_split_pt_original , od_split_car_3d, od_split_bike_3d,
od_split_pt_3d, od_split_notrip_3d, internal_zones, external_zones, copple_extern,
od_time_iterative_vmrdh , od_distance_car, disappeared_cars):
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424 """
425 Function to recalculate the OD matrix
426

427 Parameters:
428 od_car_original_vmrdh (DataFrame) : original OD matrix (6101x6101)
429 od_car_iterative_vmrdh (DataFrame) : iterative OD matrix (6101x6101)
430 od_total_original (DataFrame) : total original OD matrix (6101x6101) of car, pt

and bike trips
431 od_time_original_vmrdh (DataFrame) : original travel time matrix (6101x6101)
432 od_time_baserun (DataFrame) : travel time matrix (371x371) from base run (

normal Rotterdam network)
433 od_time_iterative_sim (DataFrame) : travel time matrix (371x371) from model run (

adjusted Rotterdam network)
434 ASC (dictionary) : storage of the Alternative Specific Constants

model parameters
435 beta (dictionary) : storage of the beta model parameters
436 od_affected_all (DataFrame) : 371 x 371 matrix matrix with values True for all

affected OD pairs and False not affected OD pair
437 od_utility_car_original , od_utility_bike, od_utility_pt (DataFrame) :

original utility OD matrix (6101x6101)
438 od_split_bike_original , od_split_pt_original (DataFrame) :

original OD split matrix (6101x6101)
439 od_split_car_3d, od_split_bike_3d, od_split_pt_3d, od_split_notrip_3d (list): OD

split matrices (6101x6101) of all iterations
440 internal_zones, external_zones (Int64Index): index with all internal/external RODY

zones
441 copple_extern (DataFrame) : coppling between external RODY zones and

corresponding V-MRDH zones
442 od_time_iterative_vmrdh (DataFrame) : iterative car travel time matrix (6101

x6101)
443 od_distance_car (DataFrame) : car distance matrix (6101x6101)
444 disappeared_cars (array) : stored reduction of car trips applied in

each iteration
445

446 Returns:
447 od_split_car (DataFrame): iterative OD split car matrix (6101x6101)
448 od_car_iterative_vmrdh (DataFrame): iterative OD car trip matrix (6101x6101)
449 od_utility_car (DataFrame):(6101x6101)
450 od_bike_new_vmrdh, od_pt_new_vmrdh, od_notrip_new_vmrdh (DataFrame): (6101x6101)
451 od_time_iterative_vmrdh (DataFrame): (6101x6101)
452

453

454 """
455 # Calculate the difference in travel time between this iteration and the base scenario

(371 x 371 matrix)
456 od_time_difference = od_time_iterative_sim - od_time_baserun
457 # Select the affected OD pairs
458 affected_pairs = od_affected_all.stack()[od_affected_all.stack() == True]
459

460 # Update the od_time_difference_affected_pairs (371x371 matrix) in the
od_car_iterative_with_vmrdh (6101x6101 matrix)

461 # Loop over the affected OD pairs
462 for (rody_origin, rody_destination) in affected_pairs.index:
463 # Select the internal to internal trips (1st quadrant)
464 if rody_origin in internal_zones and rody_destination in internal_zones:
465 original_time = od_time_original_vmrdh.loc[rody_origin, rody_destination]
466 difference_time = od_time_difference.loc[rody_origin, rody_destination]
467 updated_time = original_time + difference_time
468 if updated_time > 0:
469 # Add the updated travel time between base run and iterative run to the

overall skim matrix
470 od_time_iterative_vmrdh.loc[rody_origin, rody_destination] = updated_time
471 # Select the internal to external trips (2nd quadrant)
472 if rody_origin in internal_zones and rody_destination in external_zones:
473 # Select the VMRDH zones corresponding to the RODY destination (external zone)
474 vmrdh_destinations = copple_extern.loc[str(rody_destination)].dropna().astype(int

).values
475 original_times = od_time_original_vmrdh.loc[rody_origin, vmrdh_destinations +

1000000]
476 difference_time = od_time_difference.loc[rody_origin, rody_destination]
477 updated_times = original_times + difference_time
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478 # Only if the updated times are positive, update the values
479 if (updated_times > 0).all():
480 # Add the updated travel time between base run and iterative run to the

overall skim matrix
481 od_time_iterative_vmrdh.loc[rody_origin, vmrdh_destinations + 1000000] =

updated_times
482 # Select the external to internal trips (3rd quadrant)
483 if rody_origin in external_zones and rody_destination in internal_zones:
484 # Select the VMRDH zones corresponding to the RODY destination (external zone)
485 vmrdh_origins = copple_extern.loc[str(rody_origin)].dropna().astype(int).values
486 original_times = od_time_original_vmrdh.loc[vmrdh_origins.transpose() +

1000000, rody_destination]
487 difference_time = od_time_difference.loc[rody_origin, rody_destination]
488 updated_times = original_times + difference_time
489 # Only if the updated times are positive, update the values
490 if (updated_times > 0).all():
491 # Add the updated travel time between base run and iterative run to the

overall skim matrix
492 od_time_iterative_vmrdh.loc[vmrdh_origins.transpose() + 1000000,

rody_destination] = updated_times
493

494 # Recalculate car utility of affected car trips
495 od_utility_car = ASC['car'] + beta['car'] * od_time_iterative_vmrdh
496

497 # Recalculate no trip utility based on increase in travel time (delta_T)
498 delta_T = od_time_iterative_vmrdh - od_time_original_vmrdh
499 od_utility_notrip = np.where(delta_T < 0, -999,
500 ASC['no_trip'] + beta['no_trip'] * od_distance_car + beta['no_trip2'] * od_distance_car

**2 + \
501 beta['no_trip3'] * np.log(beta['no_trip4'] + delta_T / (

od_time_original_vmrdh)))
502 od_utility_notrip = pd.DataFrame(od_utility_notrip, index = od_utility_car.index, columns

= od_utility_car.index)
503

504

505 # Calculate the total utility (in e^)
506 od_utility_total = np.exp(od_utility_car.values) + np.exp(od_utility_bike.values) + np.

exp(od_utility_pt.values) + np.exp(od_utility_notrip.values)
507

508 # Calculating the new OD split based on simulation outcome
509 od_split_car_sim = np.round(np.exp(od_utility_car) / od_utility_total, decimals

= 6)
510 od_split_bike_sim = np.round(np.exp(od_utility_bike) / od_utility_total, decimals

= 6)
511 od_split_pt_sim = np.round(np.exp(od_utility_pt) / od_utility_total, decimals

= 6)
512 od_split_notrip_sim = np.round(np.exp(od_utility_notrip) / od_utility_total, decimals

= 2)
513

514 # Calculating the new OD split where is prevented that people change from bike and PT to
staying at home

515 od_split_bike_sim = np.maximum(od_split_bike_sim, od_split_bike_original)
516 od_split_pt_sim = np.maximum(od_split_pt_sim, od_split_pt_original)
517 od_split_notrip_sim = np.round(1 - od_split_car_sim - od_split_bike_sim - od_split_pt_sim

, decimals = 2) # Herbereken P_notrip
518

519 # Append the OD split matrix to the overall od split matrices (for all iterations)
520 od_split_car_3d.append(od_split_car_sim)
521 od_split_bike_3d.append(od_split_bike_sim)
522 od_split_pt_3d.append(od_split_pt_sim)
523 od_split_notrip_3d.append(od_split_notrip_sim)
524

525 # Calculating the new OD split where the relaxation factor is applied for the next
iteration

526 od_split_car = np.mean(od_split_car_3d, axis = 0)
527 od_split_bike = np.mean(od_split_bike_3d, axis = 0)
528 od_split_pt = np.mean(od_split_pt_3d, axis = 0)
529 od_split_notrip = np.mean(od_split_notrip_3d, axis = 0)
530

531 # Calculating new OD matrix for car trips
532 od_car_new_vmrdh = od_split_car * od_total_original
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533 od_bike_new_vmrdh = od_split_bike * od_total_original
534 od_pt_new_vmrdh = od_split_pt * od_total_original
535 od_notrip_new_vmrdh = od_split_notrip * od_total_original
536 od_car_iterative_vmrdh.update(pd.DataFrame(od_car_new_vmrdh, index=od_car_iterative_vmrdh

.index, columns=od_car_iterative_vmrdh.columns))
537

538 disappeared_cars.append(od_car_new_vmrdh.sum().sum() - od_car_original_vmrdh.sum().sum())
539 return od_split_car, od_car_iterative_vmrdh , od_utility_car, od_bike_new_vmrdh,

od_pt_new_vmrdh, od_notrip_new_vmrdh, od_time_iterative_vmrdh
540

541

542

543 def aggregate_od_matrix(full_od_matrix, od_car_original, internal_zones, external_zones,
copple_extern, ratio_330_331, ratio_329_328, ratio_270_269):

544 """
545 Function to aggregate the VMRDH format matrix (6101 x 6101) to the RODY format matrix

(371 x 371)
546

547 Parameters:
548 full_od_matrix (DataFrame) : the 6101 x 6101 matrix which needs to be aggregated
549 internal_zones (Int64Index) : Index with all internal RODY zones
550 external_zones (Int64Index) : Index with all external RODY zones
551 copple_extern (DataFrame) : DataFrame with an overview of external RODY zones and

associated VMRDH zones
552 ratio_330_331 (pandas.Series): List with all the origins and their ratio of choosing

external zone 330 over 331 to enter network
553 ratio_329_328 (pandas.Series): List with all the origins and their ratio of choosing

external zone 329 over 328 to enter network
554 ratio_270_269 (pandas.Series): List with all the origins and their ratio of choosing

external zone 270 over 269 to enter network
555

556 Returns:
557 od_matrix_new (DataFrame): the aggregated 371 x 371 matrix which can be implemented

in RODY
558 """
559 # Create list of all RODY zones
560 all_rody_zones = list(internal_zones) + list(external_zones)
561

562 # Create a new OD matrix in RODY format
563 od_matrix_new = pd.DataFrame(index=all_rody_zones, columns=all_rody_zones)
564

565 # Add all the OD values for internal to internal pairs into new OD matrix
566 od_matrix_new.loc[internal_zones, internal_zones] = full_od_matrix.loc[internal_zones,

internal_zones]
567

568 # Second quadrant: trips from inside of Rotterdam leaving Rotterdam
569 for rody_origin in internal_zones:
570 for rody_destination in external_zones:
571 # Skip all external zones that enter Rotterdam (no trips leaving Rotterdam)
572 if rody_destination in [306, 284, 269, 270, 267, 257, 339, 328, 329, 258]:
573 continue
574

575 vmrdh_destinations = copple_extern.loc[str(rody_destination)].dropna().astype(int
).values

576 # Make devision for A15/A16 highway external zone between main highway and
parallel lane

577 if rody_destination == 330:
578 total_value = full_od_matrix.loc[rody_origin, vmrdh_destinations + 1000000].

sum() * ratio_330_331.loc[rody_origin]
579 od_matrix_new.loc[rody_origin, rody_destination] = total_value
580 #print(f'({rody_origin}, {rody_destination}). ratio:{ratio_330_331.loc[

rody_origin]}. total_value = {total_value} ')
581

582 elif rody_destination == 331:
583 total_value = full_od_matrix.loc[rody_origin, vmrdh_destinations + 1000000].

sum() * (1 - ratio_330_331.loc[rody_origin])
584 od_matrix_new.loc[rody_origin, rody_destination] = total_value
585 #print(f'({rody_origin}, {rody_destination}). ratio:{1 - ratio_330_331.loc[

rody_origin]}. total_value = {total_value} ')
586 else:
587 total_value = full_od_matrix.loc[rody_origin, vmrdh_destinations + 1000000].
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sum()
588 od_matrix_new.loc[rody_origin, rody_destination] = total_value
589

590 # Third quadrant: trips from outside of Rotterdam to Rotterdam
591 for rody_destination in internal_zones:
592 for rody_origin in external_zones:
593 # Skip all rody zones of highways that leave Rotterdam
594 if rody_origin in [307, 285, 271, 268, 256, 340, 330, 331, 259]:
595 continue
596

597 vmrdh_origins = copple_extern.loc[str(rody_origin)].dropna().astype(int).values
598 # Make devision for A15/A16 highway external zone on parallel highway and main

highway
599

600 if rody_origin == 329: # Hoofdrijbaan
601 total_value = full_od_matrix.loc[vmrdh_origins.transpose() + 1000000,

rody_destination].sum() * ratio_329_328.loc[rody_destination]
602 od_matrix_new.loc[rody_origin, rody_destination] = total_value
603 #print(f'({rody_origin}, {rody_destination}). ratio:{ratio_329_328.loc[

rody_destination]}. total_value = {total_value} ')
604

605 elif rody_origin == 328: # Parallelbaan
606 total_value = full_od_matrix.loc[vmrdh_origins.transpose() + 1000000,

rody_destination].sum() * (1 - ratio_329_328.loc[rody_destination])
607 od_matrix_new.loc[rody_origin, rody_destination] = total_value
608 #print(f'({rody_origin}, {rody_destination}). ratio:{ratio_329_328.loc[

rody_destination]}. total_value = {total_value} ')
609

610 elif rody_origin == 270: # Hoofdrijbaan
611 total_value = full_od_matrix.loc[vmrdh_origins.transpose() + 1000000,

rody_destination].sum() * ratio_270_269.loc[rody_destination]
612 od_matrix_new.loc[rody_origin, rody_destination] = total_value
613

614 elif rody_origin == 269: # Parallelbaan
615 total_value = full_od_matrix.loc[vmrdh_origins.transpose() + 1000000,

rody_destination].sum() * (1 - ratio_270_269.loc[rody_destination])
616 od_matrix_new.loc[rody_origin, rody_destination] = total_value
617

618 else:
619 total_value = full_od_matrix.loc[vmrdh_origins.transpose() + 1000000,

rody_destination].sum()
620 od_matrix_new.loc[rody_origin, rody_destination] = total_value
621

622 # Adding the OD values for external zones which do not have external VMRDH zones attached
to it

623 current_index = set(od_matrix_new.index.tolist())
624 full_range = set(range(1, 372))
625 missing_zones = sorted(full_range - current_index)
626

627 #For each missing zone, retrieve the corresponding values from original_od_matrix and add
them to od_matrix_new

628 for missing_zone in missing_zones:
629 # Retrieve the row and column for the missing zone from original_od_matrix
630 if missing_zone in od_car_original.index:
631 # Add the missing row to od_matrix_new (row for the missing zone)
632 od_matrix_new.loc[missing_zone] = od_car_original.loc[missing_zone]
633 if missing_zone in od_car_original.columns:
634 # Add the missing column to od_matrix_new (column for the missing zone)
635 od_matrix_new[missing_zone] = od_car_original[missing_zone]
636

637 # Ensure the matrix is sorted after adding the missing zones (optional)
638 od_matrix_new = od_matrix_new.sort_index(axis=0).sort_index(axis=1)
639

640 # Adding the trips from external to external
641 od_matrix_new.loc[external_zones, external_zones] = od_car_original.loc[external_zones,

external_zones]
642

643 return od_matrix_new
644

645

646
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647

648 # Function to update OD matrix in the .paramics file
649 def update_od_matrix_in_model(od_affected, od_new, zone_id, model_path_intervention):
650 """
651 Function update the recalculated OD matrix in the Paramics file of the model with the

intervention
652

653 Parameters:
654 od_affected (DataFrame) : 371 x 371 matrix matrix with values True for the affected

OD pairs and False not affected OD pair
655 od_new (DataFrame) : the new car trip matrix (371 x 371) which must be updated

in the RODY model
656 zone_id (array) : the Paramics IDs for all the RODY zones
657 model_path_intervention : path to location where model is stored
658

659 """
660 # Step 1: Change the format of the OD matrix to fit the SQLITE format
661 # Set an empty list for the values which need to be updated
662 updated_values = []
663

664 # Convert the boolean matrix to a numpy array for easier indexing
665 od_affected_array = np.array(od_affected)
666

667 # Iterate through the boolean matrix
668 for i in range(od_affected_array.shape[0]): # Loop over rows (origin zones)
669 for j in range(od_affected_array.shape[1]): # Loop over columns (destination zones)
670 if od_affected_array[i, j]: # Check if the value is True
671 origin_zone_id = int(zone_id[i]) # Get the corresponding origin zone ID
672 dest_zone_id = int(zone_id[j]) # Get the corresponding destination zone ID
673

674 # Use .iloc to get the value from a DataFrame
675 demand_value = od_new.iloc[i, j] # Get the new demand value
676

677 # Append to the list in the required format
678 updated_values.append((origin_zone_id, dest_zone_id, round(demand_value, 3)))
679

680 # Step 2: Update the updated_values in the .paramics file
681 #Connect to your database
682 conn = sqlite3.connect(model_path_intervention)
683 cursor = conn.cursor()
684

685 #SQL query template to update demand
686 update_query = """
687 UPDATE demandZones
688 SET demand = ?
689 WHERE originZoneId = ? AND destZoneId = ? AND demandId = 4 AND matrixId = 0;
690 """
691

692 # Execute the update for each row in the list
693 for origin, dest, demand in updated_values:
694 cursor.execute(update_query, (demand, origin, dest))
695 conn.commit() # Commit the changes to the database
696

697 conn.close() # Close the connection
698

699

700

701 def load_coppling_extern_intern():
702 """
703 Loading information about the external and internal RODY zones and coppling with VMRDH

zones
704 """
705 # Laad de CSV in en zorg dat de AREANR-kolom als string wordt ingeladen
706 copple_list_extern_zones = pd.read_csv('Data/Coppling␣external␣(V-MRDH)␣to␣internal␣(RODY

)/tabel_arenrs.csv', delimiter=',', index_col=0, dtype={'AREANR': str})
707 copple_list_extern_zones['AREANR'] = copple_list_extern_zones['AREANR'].str.replace('"',

'') # Remove strings
708

709 # Group the zones to get a list of VMRDH groups per external zone
710 zones_grouped = copple_list_extern_zones.groupby('Bestandsnaam')['AREANR'].apply(list).

reset_index()
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711

712 # Set the grouped zones in different columns into a DataFrame
713 max_zones = zones_grouped['AREANR'].apply(len).max() # Determine the maximum number of

VMRDH zones per external RODY zone
714 copple_extern = pd.DataFrame(zones_grouped['AREANR'].tolist(), index=zones_grouped['

Bestandsnaam'], columns=[f'Zone_{i+1}' for i in range(max_zones)])
715 copple_extern = copple_extern.rename_axis('RODY␣ex␣zone') # Rename axis
716 copple_extern.index = copple_extern.index.astype(str) # Set index as string
717

718 # Maak een lijst om de nieuwe rijen in op te slaan
719 new_rows = []
720

721 for idx, row in copple_extern.iterrows():
722 # Split index to check the number of zones
723 zones = idx.split()
724

725 # if case of more than one zone, split rows and append to new_rows
726 if len(zones) > 1:
727 for zone in zones:
728 new_rows.append([zone] + row.tolist())
729 # if case of 1 zone, add original row
730 else:
731 new_rows.append([idx] + row.tolist())
732

733 # Make a new dataframe of the splitted rows
734 copple_extern = pd.DataFrame(new_rows, columns=['RODY_zone'] + copple_extern.columns.

tolist())
735 copple_extern.set_index('RODY_zone', inplace=True) # RODY zone as index
736 copple_extern = copple_extern.apply(pd.to_numeric, errors='coerce') # Change None to NaN

and convert strings to floats
737 copple_extern.dropna(how='all', inplace=True) # Remove rows with only NaN values and
738 copple_extern.iloc[:,0] = copple_extern.iloc[:,0].astype('float') # Change everything to

float
739

740 # Load the coppling table
741 coppletable = pd.read_csv('Data/Coppling␣external␣(V-MRDH)␣to␣internal␣(RODY)/

zones_RODY_to_VMRDH.csv', delimiter=';', index_col = 0)
742 # Only select the internal zones
743 copple_intern = coppletable[coppletable['Type'] == 'I']
744 # Transform the VMRDH zones from format 'CXXXX' to XXXX (float)
745 for col in copple_intern.columns:
746 if col.startswith('Omni_'):
747 copple_intern[col] = copple_intern[col].str.replace('C', '', regex=False).astype(

float) # Use float to handle NaN
748 # Drop unnecessary columns
749 copple_intern = copple_intern.drop(columns=['Type', 'Highway', 'Copple␣E', 'Center'])
750

751 # Definition of internal and external zones
752 internal_zones = copple_intern.index
753 external_zones = copple_extern.index
754 external_zones = external_zones.astype('int')
755

756 return internal_zones, external_zones, copple_extern
757

758 def reducing_od_matrix_start(od_car_original, reduction_directly_affected ,
od_affected_directly):

759 # Select the affected OD pairs
760 affected_pairs = od_affected_directly.stack()[od_affected_directly.stack() == True]
761 od_car_reduced = od_car_original.copy(deep=True)
762 # Loop over the affected OD pairs
763 for (rody_origin, rody_destination) in affected_pairs.index:
764 od_car_reduced.loc[rody_origin, rody_destination] = od_car_original.loc[rody_origin,

rody_destination] * ((100 - reduction_directly_affected) / 100)
765 return od_car_reduced
766

767

768 def change_PT_traveltime(od_time_pt_vmrdh, od_affected_directly , copple_extern,
internal_zones, external_zones, ASC, beta, TT_PT_increase):

769

770 od_time_pt_vmrdh_adjusted = od_time_pt_vmrdh.copy(deep=True)
771
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772 affected_pairs = od_affected_directly.stack()[od_affected_directly.stack() == True]
773

774 # Update the od_time_difference_affected_pairs (371x371 matrix) in the
od_car_iterative_with_vmrdh (6101x6101 matrix)

775 # Loop over the affected OD pairs
776 for (rody_origin, rody_destination) in affected_pairs.index:
777 # Select the internal to internal trips (1st quadrant)
778 if rody_origin in internal_zones and rody_destination in internal_zones:
779 od_time_pt_vmrdh_adjusted.loc[rody_origin, rody_destination] = od_time_pt_vmrdh.

loc[rody_origin, rody_destination] + TT_PT_increase
780

781 # Select the internal to external trips (2nd quadrant)
782 if rody_origin in internal_zones and rody_destination in external_zones:
783 # Select the VMRDH zones corresponding to the RODY destination (external zone)
784 vmrdh_destinations = copple_extern.loc[str(rody_destination)].dropna().astype(int

).values
785 od_time_pt_vmrdh_adjusted.loc[rody_origin, vmrdh_destinations + 1000000] =

od_time_pt_vmrdh.loc[rody_origin, vmrdh_destinations + 1000000] +
TT_PT_increase

786

787 # Select the external to internal trips (3rd quadrant)
788 if rody_origin in external_zones and rody_destination in internal_zones:
789 # Select the VMRDH zones corresponding to the RODY destination (external zone)
790 vmrdh_origins = copple_extern.loc[str(rody_origin)].dropna().astype(int).values
791 od_time_pt_vmrdh_adjusted.loc[vmrdh_origins.transpose() + 1000000,

rody_destination] = od_time_pt_vmrdh.loc[vmrdh_origins.transpose() + 1000000,
rody_destination] + TT_PT_increase

792

793 # Recalculate utility
794 od_utility_pt = ASC['PT'] + beta['PT'] * od_time_pt_vmrdh_adjusted
795

796 return od_utility_pt



B
Determination threshold KS-value

This appendix describes the determination of the threshold value to stop the iterative process, which
entails that there is reached a new balance between car usage and traffic congestion. The threshold
value is determined by looking at the standard deviation of six parallel runs. The travel time CDFs of
the individual runs of directly affected OD pairs are shown in Figure B.1.

Figure B.1: Cumulative distribution functions for travel times of directly affected OD pairs for each individual model run with
equal input.

Based on the individual runs, the average travel time CDF is calculated. The standard deviation be-
tween iterations is σ = 0.0084. This is the lower bound for the threshold, as this is the variation of model
outcome for the same OD matrix.

It is also important to preserve convergence speed of the model, since one iteration will take about five
hours to complete. To examine the convergence speed, the DiTra model is applied to the Roseknoop
phase 1, without optimising the convergence process. This results in the iteration outcomes in Figure
B.2.
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Figure B.2: CDFs of different iterations for DiTra model for directly affected OD pairs.

An overview of the iteration outputs is shown in Table B.1. The ∆cartrips show the change in car trips
applied in the corresponding iteration. ∆Tdirectly shows the resulting additional travel time for directly
affected OD pairs.

Iteration ∆cartrips ∆Tdirectly KS value
1 0 + 4.791 min -
2 - 7775 + 0.713 min 0.256
3 - 1672 + 3.327 min 0.197
4 - 4330 + 2.046 min 0.090
5 - 3264 + 2.434 min 0.034
6 - 3446 + 2.433 min 0.017
7 - 3565 + 2.246 min 0.014

Table B.1: Model results for the different iterations for phase 1 (the values in ∆cartrips and ∆Tdirectly are compared to the
base scenario, the KS value is between last iterations)

In Figure B.3, the KS values for directly affected OD pairs is shown. This figure shows the convergence
of the model and indicates that from iteration 5, the KS value compared to base stabilises, indicating
the model has found a new equilibrium.
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Figure B.3: KS value of the iterations of Roseknoop phase 1 compared to the base scenario

Figure B.4 describes the course of the KS values between iterations. This shows a large decent in the
beginning, and a slower decent at the end, with the last KS values being almost similar with 0.017 and
0.014, where the equilibrium is reached.

Figure B.4: KS value of the iterations of Roseknoop phase 1 compared to the previous iteration
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Based on these results, the threshold value is set at KStreshold = 3σ = 0.0252. This value is slightly
higher than the KS values observed during equilibrium iterations (0.017 and 0.014), ensuring a reason-
able balance between convergence speed and stability. A stricter threshold could unnecessarily extend
the iterative process, while a more relaxed one might reduce the accuracy of the final equilibrium state.

Moreover, the chosen threshold remains lower than the KS value observed in iteration 5 (0.034), which
is desirable, as this iteration still exhibited significant fluctuations in the number of car trips (ranging
from -4330 to -3264). This suggests that setting a higher threshold could result in stopping the iterative
process before achieving sufficient stability.



C
Reference locations data analysis

The locations of the reference data points are shown in Figure C.1.

Figure C.1: Locations of reference point traffic volume

The traffic volume for these data points is plotted in Figure C.2.
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Figure C.2: Traffic volume reference traffic data

The average of the relative traffic volume compared to November 2022 is used as overall reference
data.



D
Mathematical functions change in

mobility distribution

In this appendix, the mathematical functions are provided which are obtained as a result of the cali-
bration of the model. For the most frequent trip types, the function for the probability of choosing an
alternative is shown. Palternative is the probability of choosing the alternative. ∆T is the increase in travel
time in minutes. It should be noted that these functions are simplified. Based on the utility functions, all
lines are non linear, however, practically, they are very close to linear. Therefore, these functions are
a way to easily see the effect. For the original non linear functions, use the utility functions and apply
the logit model.

For short inner city trips:

Pcar = 0.53− 0.014 ·∆T (D.1)

PPT = 0.18 + 0.00233 ·∆T (D.2)

Pbike = 0.30 + 0.00667 ·∆T (D.3)

Pnotrip = 0.004 ·∆T (D.4)

For a trip from the suburb to the city centre:

Pcar = 0.56− 0.0153 ·∆T (D.5)

PPT = 0.21 + 0.00467 ·∆T (D.6)

Pbike = 0.25 + 0.0067 ·∆T (D.7)

Pnotrip = 0.007 ·∆T (D.8)

For trips from an adjacent city to Rotterdam:
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Pcar = 0.63− 0.018 ·∆T (D.9)

PPT = 0.295 + 0.00433 ·∆T (D.10)

Pbike = 0.08 + 0.00067 ·∆T (D.11)

Pnotrip = 0.014 ·∆T (D.12)

For trips from a distant city to Rotterdam:

Pcar = 0.00115 ·∆T 2 − 0.04856 ·∆T + 0.74 (D.13)

PPT = 0.27 (D.14)

Pbike = 0 (D.15)

Pnotrip = −0.00137 ·∆T 2 + 0.05322 ·∆T (D.16)



E
Congestion heat maps of phase 1

(outcome DiTra model)

Below the congestion heat maps of all the different runs from the final RODY simulation, the new
equilibrium, are shown.

Figure E.1: Congestion heat map of equilibrium phase 1 run 1
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Figure E.2: Congestion heat map of equilibrium phase 1 run 2

Figure E.3: Congestion heat map of equilibrium phase 1 run 3
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Figure E.4: Congestion heat map of equilibrium phase 1 run 4

Figure E.5: Congestion heat map of equilibrium phase 1 run 5
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Figure E.6: Congestion heat map of equilibrium phase 1 run 6
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