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Abstract

This thesis aims to optimize parking capacities in an urban area with three goals in
mind: minimize fossil fuel emissions, minimize travel times, and minimize the space
occupied by parking facilities. The method to achieve this goal can be separated into
two components. Firstly, a model is defined to simulate traffic and parking in an urban
area. Secondly, using this model, evolutionary algorithms are applied to find parking
capacities with the aforementioned objectives.
Initial experiments involve applying the developed method to various small-scale sce-

narios. The results of these experiments reveal promising outcomes, as the proposed
method positively contributes to achieving the three objectives.
Furthermore, we show that the method can be applied to a real-world urban area: the

city of Delft in the Netherlands. The application to Delft not only shows the adaptability
of the method to real-world urban scenarios but also highlights its potential to provide
benefits to urban planning.
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1. Introduction

1.1. Research Motivation

According to a study conducted by CBS (2021), the most used mode of travel in the
Netherlands is the car, accounting for 43 percent of all trips. The utilization of cars
goes paired with fossil fuel emissions, damaging the environment. On top of this, the
large number of cars on the roads causes a lot of congestion. Research conducted in the
middle of 2023 by ANWB Verkeersinformatie (2023) showed that traffic congestion in
the Netherlands in the first half of 2023 has increased by 15 percent compared to the
first half of 2019.
Parking plays a crucial role when it comes to the subject of cars. As claimed by

Bonsall and Palmer (2004), up to 40 percent of the total travel time when traveling to
central urban areas, is used to find a parking space. Also, parking facilities require a
lot of land. According to Kuys (2022), in the Netherlands, more space is occupied by
parking facilities than by housing.
That is why it is important to consider how to optimize parking in urban areas. A

method to achieve this is to optimize the number of parking spaces offered at every park-
ing facility. In this thesis, we focus on optimizing parking capacities with the following
objectives in mind.

• Minimize emissions: The usage of cars to travel cause a lot of greenhouse gas
emissions and air pollution in urban areas. By optimizing parking capacities, we
aim to minimize emissions.

• Minimize travel times: Traffic congestion and longer travel times are a big
problem for car users. It is important for an urban area to still be accessible. By
optimizing parking capacities, we try to reduce overall traffic congestion and thus,
decrease overall travel times.

• Efficient land utilization: The limited availability of land in urban areas asks for
efficient use to meet all the needs of inhabitants. However, parking facilities often
make up large amounts of valuable urban space. By optimizing parking capacities,
we aim to make more land available for other purposes.

Simultaneously addressing these goals can be difficult. For example, if the number of
parking spots is reduced, finding an available spot can take significantly longer. So while
we may limit the space parking facilities utilize, travel times will increase. These kinds
of trade-offs make this such a complex problem to solve.
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Hence, our aim is to minimize some weighted average of these three variables. The
weights depend on the importance assigned to each objective. This importance is for
example chosen by a policymaker in an urban area.

1.2. Brief Overview of Past Literature

Several papers have conducted research on the optimization of parking with different
objectives in mind. We divide this research into three categories: the maximization of
parking capacities in a parking facility, optimizing parking locations, and optimizing
parking prices.

• Maximizing parking capacities: Abdelfatah and Taha (2014) presented a
method to determine the optimal parking angle to maximize parking capacities
in a parking facility. However, in this case, the goal is to maximize the num-
ber of parking spaces in a certain parking facility by looking at the design. Our
goal is not to maximize parking capacities in a parking facility, but our goal is
to choose optimal parking capacities for different parking facilities with the three
objectives mentioned before. So although this is in the literature referred to as the
optimization of parking capacities, it is fundamentally different research.

• Optimizing parking locations: Chen et al. (2001) proposed a method to choose
parking locations in a city to minimize the total walking distance from a parking
space to a destination. Austin and Lee (1973) considered parking cost and travel
distance on top of walking time as factors in their method of optimizing parking
locations. Shen, Hua, and Liu (2019) presented a model to minimize emissions
by optimizing parking locations. Ruan et al. (2016) considered two cases of park-
ing capacities in their model to optimize parking locations with the objective of
maximizing accessibility.

• Optimizing parking prices: D’Acierno, Gallo, and Montella (2006) introduced
a model to set parking fees with the goal of increasing the use of other modes of
transport than the car. Pierce, Willson, and Shoup (2015) designed a method to
choose parking fees such that the occupancy of parking facilities is high, but still
enough empty parking spaces are available at all times.

However, all these papers do not address the optimization of parking capacities as
proposed. By considering parking capacities, parking locations are also implicitly in-
cluded. In this research, we aim to come up with a model to optimize parking capacities
with the three objectives previously mentioned. One of these objectives is minimizing
the space used by parking facilities. This objective has not been considered yet in the
studies we have discussed.
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1.3. Research Questions

This thesis aims to develop a method to optimize parking capacities to minimize a
weighted average of emissions, travel time, and the use of land for parking, which leads
to the following research question:

Main Research Question. How can we optimize parking capacities to
minimize a weighted average of emissions, travel time, and land used for
parking?

To answer this research question, we introduce two sub-questions. We present these
questions and discuss how these questions contribute to the main research question.

Sub-question 1. How can we simulate traffic and parking in an urban area?

In principle, there are two approaches to help answer the research question.
Firstly, we could use data about emissions, travel times, and the land occupied by

parking facilities and see what implications certain changes in parking capacities have
on these variables. By examining this data, we can determine the parking capacities
that result in the smallest weighted average of emissions, travel times, and utilization
of land for parking space. However, due to the unavailability of such data and the high
cost and low efficiency of implementing parking capacity changes in real urban areas for
experimentation, an alternative approach is necessary.
A second approach is to simulate traffic and parking in an urban area. Through this

simulation, we can analyze the effects of different parking capacities on emissions, travel
times, and land used for parking. By evaluating the simulation outputs, we can select
the parking capacities that minimize the weighted average of emissions, travel times, and
land occupied by parking. This approach provides a cost-effective and efficient method
of analyzing the implications of changing parking capacities in an urban area.

Sub-question 2. Which techniques can be used to optimize parking capac-
ities and how can these methods be applied exactly?

When we can simulate traffic and parking, selecting the parking capacities that minimize
this weighted average of emissions, travel times, and the usage of land for parking is not
that straightforward. Two problems make this question difficult to answer. Firstly, it
will turn out that this weighted average is not just some smooth function. Secondly, the
solution space of this optimization problem is very large. It is therefore not guaranteed
that we find a method that finds an exact optimum.

1.4. Outline

Theoretical background about simulating traffic is introduced in Chapter 2. A mathe-
matical analysis is given, while also a numerical approach is shown. This chapter helps
to answer sub-question 1.
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Chapter 3 presents theoretical background about optimization techniques. In this
chapter, we describe existing techniques in general, without applying them to traffic and
parking yet. This chapter helps us provide an answer to sub-question 2.
In Chapter 4, the methodology is presented. In Section 4.1 the addition of parking to

the simulation of traffic is addressed and an answer is given to sub-question 1. Applying
optimization techniques to the traffic and parking simulation to find optimal parking
capacities is investigated in Section 4.2, which answers sub-question 2.
Finally, in Chapter 5 we apply our model of optimizing parking capacities on some

examples. We start with small examples, which allows us to make a complete analysis
of the results. We also show that our model can be used in practice by applying it to
the city of Delft in the Netherlands.

1.5. Acknowledgements
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2. Road Traffic Models

We start by looking at basic traffic models. In this chapter, we define basic road traffic
networks and how drivers behave in these road networks. In principle, drivers try to
minimize their travel times, and under certain circumstances, it will turn out that this
leads to an equilibrium. The background information in this chapter is mainly based on
Chapter 4 of Kelly and Yudovina (2014) and Chapter 3 to 5 of Sheffi (1985).

2.1. Defining a Road Network

Formally, a road network can be represented by a directed graph G = (V,J ), where V
are the vertices and where J are the directed edges of the graph (roads can be two-way,
by introducing two links for both directions). The (weighted) edges represent the roads
in the network, while the vertices represent the intersections between these roads. The
weight of an edge can be seen as the cost for a driver when choosing that road. A natural
choice would be to take the length of the road as cost. An example of such a graph is
given in Figure 2.1.

S

W

N

E

5 3

5 3

Figure 2.1.: Example of a basic traffic network

Suppose a driver would want to travel from the south (S) to the north (N). They would
choose to travel through the east (E), as this would cost them 6 units while traveling
through the west (W) would cost them 10 units. In this network, they would always
choose the path with the lowest cost. To find such a shortest path, we can use Dijkstra’s
shortest path algorithm, which is described in Section 7.20 of Miller and Ranum (2011).
The problem with this basic model is that it does not take into account how many

drivers use a road, which we call the flow. In practice, when too many drivers use a
road at the same time, a negative externality arises, namely traffic congestion. In urban
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areas, as roads are scarce, this is a reoccurring problem. In the example of Figure 2.1,
every driver in the network would use the road going from the south (S) to the east (E)
and the road going from the east (E) to the north (N) to minimize their travel time.
In practice, this will most likely cause these roads to become congested, which would
increase travel times considerably. Therefore, it may be more attractive for some drivers
to avoid this by choosing to drive through the west (W) instead. As a result, when
determining which road to choose, it is important to take flows on roads into account.
Let y denote the flow on a road. An example that considers the flows on the roads is

given in Figure 2.2. Again, assume drivers want to go from the south (S) to the north
(N).

S

W

N

E

y + 5 y + 3

y + 5 y + 3

Figure 2.2.: Example of a basic traffic network with flows

In an empty network, where all flows are equal to 0, a driver would still choose to
travel through the east (E). However, suppose 10 cars want to travel from the south
(S) to the north (N). If all cars choose to travel through the east (E), the cost of this
route would be 26 units. In contrast, traveling through the west (W) would still cost 10
units. So now traveling through the west (W) is more attractive. We say this network
is in equilibrium when no driver has the incentive to choose an alternative route. In this
example, that would be when six drivers would choose to travel through the east (E)
and four drivers would choose to travel through the west (W). This way, both routes
would have a cost of 18 units. In the next section, we will formalize this equilibrium,
which is known as the Wardrop equilibrium.

2.2. Wardrop Equilibrium

To introduce the notion of the Wardrop equilibrium, we need to discuss the concept of
routes and flows on routes. In addition to the set of (directed) edges J , we define the
set of possible routes R ⊂ 2J ; each route is a subset of edges. We define the link-route
incidence matrix A so that Ajr = 1 if j ∈ r for some link j and route r, and Ajr = 0
otherwise.
Let xr denote the flow on route r. Then let x = (xr, r ∈ R) represent the vector of
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flows on the routes. The flow on a single edge j is then given by

yj =
∑
r∈R

Ajrxr, j ∈ J ,

or equivalently: y = Ax. Here y = (yj , j ∈ J ) represents the vector of flows on the
roads.
The cost or delay that a driver experiences on a single edge j is given by a function

Dj(yj). We assume that this function is continuously differentiable and increasing. To
compute the cost of a route, we simply take the sum of the delays of the edges in this
route.

We assume that drivers only want to travel from A to B in the shortest possible time,
but do not have any other preferences for the route they take. Let S ⊂ J ×J be the set
of OD pairs (origin-destination pairs). For every OD pair, there is a set of routes that
serve it. So for the examples in Figures 2.1 and 2.2 we only had (S,N) as an OD pair.
For this OD pair, we considered two routes to serve it: one route through the west (W)
and the other route through the east (E). In general, we write H to denote the incidence
matrix where Hsr = 1 if the OD pair s is served by route r, and Hsr = 0 otherwise.
Note that we do not have to include every possible route for an OD pair, we could also
choose to omit some possible routes. We write s(r) for the OD pair corresponding to
route r. The flow fs on an OD pair is then given by

fs =
∑
r∈R

Hsrxr, s ∈ S,

or equivalently: f = Hx. Here f = (fs, s ∈ S) denotes the vector of flows on an OD
pair.

2.2.1. User-equilibrium Formulation

In equilibrium, no driver has the incentive to deviate from the route they are taking on
a certain OD pair. Formally, this means:

xr > 0 =⇒
∑
j∈J

Dj(yj)Ajr ≤
∑
j∈J

Dj(yj)Ajr′ , ∀r′ ∈ s(r).

In words, this states that a flow on a particular route r can be non-zero, only when the
delay experienced on this road is less than or equal to the delay experienced on any other
route with the same OD pair. There are two cases: either the flow for a route is zero or
the cost is equal to the minimum cost of the corresponding OD pair. This equilibrium
is known as the Wardrop equilibrium:

Definition 2.3. A Wardrop equilibrium is a vector of flows on the routes, x = (xr, r ∈
R) such that

xr > 0 =⇒
∑
j∈J

Dj(yj)Ajr = min
r′∈s(r)

∑
j∈J

Dj(yj)Ajr′ ,

where y = Ax.
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We will now show that such a Wardrop equilibrium exists, given the assumptions we
made.

Theorem 2.4. Suppose that there is at least one path between every OD pair specified
in some set of OD pairs S. Also, assume that the delay functions Dj(yj) are continu-
ously differentiable and increasing for every link j ∈ J . Then there exists a Wardrop
equilibrium.

Proof. We consider the following minimization problem:

minimize
∑
j∈J

∫ yj

0
Dj(u) du

subject to Hx = f,Ax = y

over x ≥ 0, y.

By definition, as Ax = y and as A only contains 0 or 1, we know that y ≥ 0 as
well. The region we minimize over is convex and compact. As we defined Dj to be
continuously differentiable and increasing, the objective function is differentiable and
convex. Therefore, the first-order conditions for a minimum are necessary and sufficient.
To find these first-order conditions for a minimum, the Lagrange multiplier method can
be applied. The Lagrangian is given by

L(x, y;λ, µ) =
∑
j∈J

∫ yj

0
Dj(u) du+ λ · (f −Hx)− µ(y −Ax).

To solve this, we differentiate with respect to x and with respect to y:

∂L(x, y;λ, µ)

∂yj
= Dj(yj)− µj ,

∂L(x, y;λ, µ)

∂xr
= −λs(r) +

∑
j∈J

µjAjr.

As we minimize over yj ∈ R, we know that the minimum is attained when the derivative
with respect to yj is equal to 0. So we obtain

Dj(yj)− µj = 0 ⇐⇒ µj = Dj(yj).

As we minimize over xr ≥ 0, we know the minimum is attained for xr = 0 when the
derivative is nonnegative and for xr > 0 when the derivative with respect to xr is equal
to 0. So we obtain{

−λs(r) +
∑

j∈J µjAjr = 0, xr > 0,

−λs(r) +
∑

j∈J µjAjr ≥ 0, xr = 0,
⇐⇒

{
λs(r) =

∑
j∈J µjAjr, xr > 0,

λs(r) ≤
∑

j∈J µjAjr xr = 0.

We can interpret λ(s(r) as the minimal cost corresponding to the OD pair s(r). In
conclusion, solutions to this minimization, are the solutions of the Wardrop equilibria.
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If we would assume that the delay functions Dj are strictly increasing, the objective
function would become strictly convex. We know if an optimum exists for a strictly
convex function over a convex set, that it is unique. As existence is proven by Theorem
2.4, in this case, the Wardrop equilibrium would be unique.

Connection with Nash Equilibrium

There is a clear connection between the Wardrop equilibrium in traffic assignment and
the Nash equilibrium in game theory. The Nash equilibrium is the solution to a non-
cooperative game with multiple players. The players are assumed to know the equilib-
rium strategies of other players, which is minimizing travel time in the case of traffic.
The Nash equilibrium is then defined as the solution in which players do not have the
incentive to change their strategy, which is their route in the case of traffic. In princi-
ple, this definition is equivalent to the definition of the Wardrop equilibrium in traffic
assignment. However, in the case of traffic assignment, there are many players, which
makes it more complex. The Wardrop equilibrium is therefore also referred to as the
Nash equilibrium for games with a continuum of players. A more extensive analysis of
the relationship between these two equilibria is provided by Haurie and Marcotte (1985).

2.2.2. Braess’s Paradox

As we stated in Chapter 1, two variables we would want to minimize are total delay and
total distance. It would be logical to assume that simply adding roads would decrease
the total delay. However, this is not necessarily the case.
We know from game theory that the Nash equilibrium is often not the social optimum.

Similarly, the Wardrop equilibrium is often not the social optimum. This is because
drivers only want to minimize their own travel time, which does not mean that the
overall travel time is minimized. In the social optimum, the sum of travel times is
minimized. In this situation, there is often a possibility for drivers to decrease their
individual travel times by deviating from their chosen route, resulting in a deviation
from the social optimum under the assumptions we made.
To illustrate this, we analyze the examples in Figure 2.5. Suppose again, that 10

drivers want to travel from the south (S) to the north (N). In the first example, the
network structure is the same as in Figure 2.2, a driver could choose to travel through
the west (W) or the east (E). However, in the second example, a road is added between
the west (W) and the east (E). This way, a new route arises.
In red, the flows are shown for which the networks are in a Waldrop equilibrium. In

the first example, the resulting total travel times for both routes are equal to 60. In the
second example, the resulting total costs for the three routes are equal to 64. The total
delay in the equilibrium has indeed increased by adding a road. Clearly, the Wardrop
equilibrium in the second example is not the social optimum, as the same flows as in
the first example would achieve a lower total travel time. This phenomenon is called
Braess’s paradox.
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2

Figure 2.5.: An example showing Braess’s paradox

2.2.3. System-optimization Formulation

In practice, drivers always tend to minimize their own costs. It is interesting to analyze
if there is a method to let the Wardrop equilibrium align with the social optimum. In
particular, is it possible, for example by enforcing some policy, to force the Wardrop
equilibrium to be the same as the social optimum, or at least to force the Wardrop
equilibrium to get closer to the social optimum?

First, let us rewrite the minimization problem such that the solution aligns with the
social optimum. To achieve this, we can use the cumulative total delay

∑
j∈J yjDj(u)

as our objective function:

minimize
∑
j∈J

yjDj(u)

subject to Hx = f,Ax = y

over x ≥ 0, y.

This problem can again be solved in the same fashion as Theorem 2.4. We define the
Lagrangian

L(x, y;λ, µ) =
∑
j∈J

∑
j∈J

yjDj(u) + λ · (f −Hx)− µ(y −Ax).

To solve this, we differentiate with respect to x and with respect to y:

∂L(x, y;λ, µ)

∂yj
= Dj(yj) + yjD

′
j(yj)− µj ,

∂L(x, y;λ, µ)

∂xr
= −λs(r) +

∑
j∈J

µjAjr.

We again obtain {
λs(r) =

∑
j∈J µjAjr, xr > 0,

λs(r) ≤
∑

j∈J µjAjr xr = 0.
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However, for µj we obtain

µj = Dj(yj) + yjD
′
j(yj).

This suggests that by adding some toll Tj(yj) = yjD
′
j(yj) on the roads, we could en-

courage drivers to move to the social optimum. For example, for the edge from the
south (S) to the west (W) in Figure 2.5, Dj(yj) = 5yj , and thus the toll would be
Tj(yj) = yjD

′
j(yj) = 5yj . Note that this toll depends on the flow, so in reality, this toll

would have to be dynamic, depending on how many drivers are on the road. This may
be a bit impractical to implement, so an alternative would be to compute the flows in
the Wardrop equilibrium at rush hour and use these flows.

2.3. Numerical Methods

It is not always feasible to find the Wardrop equilibrium, for example when the network
gets too large and too complex. When this is the case, we can use numerical methods
to approximate the Wardrop equilibrium.

2.3.1. Naive Method

A naive approach would be to first start with an all-or-nothing assignment in an empty
network (flows equal to 0). In the all-or-nothing assignment, all drivers choose the
shortest path without considering congestion effects, so without taking into account the
change of flows such that delays are static. We have seen earlier that in that case,
Dijkstra’s shortest path algorithm can be applied. Then based on the flows after this
assignment, delays can be updated. Consequently, a new all-or-nothing assignment can
be assigned. We can iterate this until there is convergence. In this case, by convergence,
we mean that the maximal difference in flows between iterations becomes small, let’s
say smaller than some κ > 0. Now, let Dn

j denote the delay on edge j and ynj denote the
flow on edge j in the n-th iteration. Then the mathematical formulation of this naive
approach is given by Algorithm 2.6.

1 Set D0
j := Dj(0) for all j ∈ J .

2 Obtain {y0j } by all-or-nothing assignment and set iteration counter n := 1.

3 Set Dn
j := Dj(y

n−1
j ) for all j ∈ J .

4 Obtain {ynj } by all-or-nothing assignment.

5 if maxj{|ynj − yn−1
j |} ≤ κ then

6 Terminate
7 else
8 Set n := n+ 1 and return to step 3.
9 end

Algorithm 2.6: Naive algorithm to approximate the Wardrop equilibrium
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The problem with this algorithm is that it does not necessarily converge. If we again
consider the example in Figure 2.2, this algorithm will continue to give full flow to one of
the two routes alternatingly. A remedy could be to stop the algorithm after N iterations
and take the final flow assignment as the average of the last n ≤ N flow assignments.
However, it is useful to consider an algorithm that provides convergence.

2.3.2. Frank-Wolfe algorithm

An example of a method that is guaranteed to provide convergence is the Frank-Wolfe
algorithm, which was introduced in Frank and Wolfe (1956). First, we look at the
Frank-Wolfe algorithm in general, and then we will specify how to use it for finding or
approximating a Wardrop equilibrium. Let f be a convex and continuously differentiable
function, and let D be a compact convex set. Additionally, let the gradient of f , ∇f be
L-Lipschitz continuous. Suppose we want to solve the minimization problem

min
y∈D

f(y).

Then the Frank-Wolfe algorithm is given by Algorithm 2.7.

1 Let y0 ∈ D be a feasible solution and set n := 0.
2 Obtain zn = argminz∈D ∇f(yn)T z
3 Set yn+1 = yn + αn(z

n − yn) for αn = 2
n+2 .

4 if maxj{|ynj − yn−1
j |} ≤ κ then

5 Terminate
6 else
7 Let n := n+ 1 and return to step 2
8 end

Algorithm 2.7: Frank-Wolfe algorithm

We continue by providing a proof of the convergence of the Frank-Wolfe algorithm,
which is mainly based on Jaggi (2013). We start by defining the curvature constant Cf

of a convex and continuously differentiable function f (on a set D):

Cf := sup
y,z∈D
α∈[0,1]

w=y+α(z−y)

2

α2
(f(w)− f(y)− ⟨w − y,∇f(y)⟩) .

Given our assumptions that f is continuously differentiable and has L-Lipschitz contin-
uous gradient we can apply Theorem A.3 to conclude that Cf is in this case positive and
bounded.
To help us prove convergence, we continue by defining a function g:

g(y) = max
z∈D

∇f(y)T (y − z).
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Note that this maximum is achieved for z = argminz∈D ∇f(y)T z. The following lemma
then presents the main inequality we need to show the convergence of the Frank-Wolfe
algorithm.

Lemma 2.8. Let f be a convex and continuously differentiable function defined on a
compact convex set D. Additionally, let ∇f be L-Lipschitz continuous and let yn, zn and
αn be as defined in Algorithm 2.7. Lastly, let Cf be the curvature constant of f . Then

f(yn+1) ≤ f(yn)− αng(y
n) +

α2
n

2
Cf .

Proof. We see that

f(yn+1)
(1)
= f(yn + αn(z

n − yn))

= f(yn) + ⟨αn(z
n − yn),∇f(yn)⟩

+
α2
n

2

(
2

α2
n

(f(yn + αn(z
n − yn))− f(yn)− ⟨αn(z

n − yn),∇f(yn)⟩)
)

(2)

≤ f(yn) + ⟨αn(z
n − yn),∇f(yn)⟩+ α2

n

2
Cf

= f(yn)− αn⟨(yn − zn),∇f(yn)⟩+ α2
n

2
Cf

(3)
= f(yn)− αng(y

n) +
α2
n

2
Cf ,

where (1) follows from the definition of yn, (2) follows from the definition of Cf , and (3)
follows from the definition of zn and the maximality of g.

In the next theorem, we formalize the convergence of the Frank-Wolfe algorithm.

Theorem 2.9. Let f be a convex and continuously differentiable function. Additionally,
let ∇f be L-Lipschitz continuous and let yn, zn and αn be as defined in Algorithm 2.7.
Lastly, let Cf be the curvature constant of f . Then for n ≥ 1, we have:

f(yn)− f∗ := f(yn)−min
y∈D

f(y) ≤
2Cf

n+ 2
.

Proof. We find

f(yn+1)− f∗
(1)

≤ f(yn)− f∗ − αng(y
n) +

α2
n

2
Cf

(2)

≤ f(yn)− f∗ − αn(f(y
n)− f∗)) +

α2
n

2
Cf

= (1− αn)(f(y
n)− f∗) +

α2
n

2
Cf ,
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where (1) follows from Lemma 2.8, and (2) follows from the maximality of g. Now to
find the desired upper bound, we use induction. We start with the base case. Note that
α0 = 1 and so that the above tells us f(y1)−f∗ ≤ 1

2Cf ≤ 2
3Cf , as Cf ≥ 0. Furthermore,

when we fill in the value of αn, we see that

f(yn+1)− f∗ ≤ (1− αn)(f(y
n)− f∗) +

α2
n

2
Cf

=

(
1− 2

n+ 2

)
(f(yn)− f∗) +

4

2(n+ 2)2
Cf

(3)

≤
(
1− 2

n+ 2

)
2Cf

n+ 2
+

4

2(n+ 2)2
Cf

=
2Cf

n+ 2

(
1− 1

n+ 2

)
=

2Cf

n+ 2

n+ 1

n+ 2

≤
2Cf

n+ 2

n+ 2

n+ 3

=
2Cf

(n+ 1) + 2
,

where (3) follows from the induction hypothesis.

Indeed, when Cf is bounded, we see that f(yn) − f∗ → 0 as n → ∞, and thus, the
Frank-Wolfe algorithm provides convergence with rate O

(
1
n

)
.

We now have the rather strong assumption that the gradient, ∇f(y), is L-Lipschitz
continuous. However, it is also enough to consider the weaker assumption that Cf is
finite. We could even argue that Cf can be anything sublinear i.e. Cf = O(nβ) for
β ∈ [0, 1) would be sufficient.

Choice of Step Size αn

The step size we have chosen in step 3 of Algorithm 2.7, αn = 2
n+2 , seems quite arbitrary.

The idea is that when we use a decreasing step size, the solution moves less and less in
the direction of the linearization minimizer as the algorithm continues. Furthermore, a
step size should always be between 0 and 1, otherwise, it could happen that the new
solution, yn+1, ends up outside of the solution space. Obviously, there are a lot more
possible step sizes with the same properties though.

An entirely different type of choice for the step size is

αn = arg min
αn∈[0,1]

f(yn + αn(z
n − yn)).

The Frank-Wolfe algorithm with this step size is also known as the line search method,
which is described in Chapter 3 of Nocedal and Wright (2006). However, it turns out
that this also provides convergence of rate O

(
1
n

)
.
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Canon and Cullum (1968) have actually proven that the rate of convergence of the
Frank-Wolfe algorithm is no better than O

(
1
n

)
no matter which αn is chosen. Theorem

2.9 shows that the choice αn = 2
n+2 provides a convergence of rate O

(
1
n

)
. Thus, as we

can do no better, it is not needed to consider other step sizes.

Translation to Traffic

Now we move on to translating the Frank-Wolfe algorithm to be applied to traffic as-
signment. Remember that to obtain the Wardrop equilibrium, the function we want to
minimize is given by

f(x) =
∑
j∈J

∫ yj

0
Dj(u) du.

Also, remember that the region we minimize over is convex and compact. Then to apply
Frank-Wolfe, we first compute the gradient

∇f(x) = ∇

∑
j∈J

∫ yj

0
Dj(u) du


= (D1(y1), . . . , DJ(yJ)),

where J = |J |. Then the second rule of Algorithm 2.7 translates to

zn = argmin
z∈D

∑
j∈J

Dj(yj)zj .

This zn corresponds to the flow that minimizes the total delay of the network. Note
that weights are not dependent on z, so the minimizer is the all-or-nothing assignment.
In conclusion, we can apply the Frank-Wolfe algorithm as given by Algorithm 2.10 to
approximate the Wardrop equilibrium. To obtain convergence of the algorithm, we have
to assume that ∇f(x) = (D1(y1), . . . , DJ(yJ)) is L-Lipschitz continuous.

1 Set D0
j := Dj(0) for all j ∈ J .

2 Obtain {y0j } by all-or-nothing assignment and set iteration counter n := 0.

3 Set Dn
j := Dj(y

n
j ) for all j ∈ J .

4 Obtain (auxiliary) {znj } by all-or-nothing assignment.

5 Set yn+1
j = ynj + αn(z

n
j − ynj ) for αn = 2

n+2 .

6 if maxj{|ynj − yn−1
j |} ≤ κ then

7 Terminate
8 else
9 Let n := n+ 1 and return to step 3

10 end

Algorithm 2.10: Frank-Wolfe algorithm to find Wardrop equilibrium
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In Table 2.11, the Frank-Wolfe algorithm applied to the left network of Figure 2.5
is shown. Note that the all-or-nothing flows znj also correspond to the naive method.
Indeed, in this case, the naive algorithm does not converge as it just assigns a full flow
of 10 to either the route S → W → N or the route S → E → N . However, the flows ynj
corresponding to the Frank-Wolfe algorithm indeed converge to the Wardrop equilibrium
in which the flow on every edge is equal to 5. Obviously, in the cases of Figure 2.5, it
is easy to compute the Wardrop equilibrium by hand, but in cases where the network is
much larger and much more complex, the Frank-Wolfe algorithm is a necessity.

n SW SE WN EN Step Size

0 y0SW = 10 y0SE = 0 y0WN = 10 y0EN = 0

1 z0SW = 0 z0SE = 10 z0WN = 0 z0EN = 10
y1SW = 0 y1SE = 10 y1WN = 0 y1EN = 10 α0 = 1

2 z1SW = 10 z1SE = 0 z1WN = 10 z1EN = 0
y2SW ≈ 6.667 y2SE ≈ 3.333 y2WN ≈ 6.667 y2EN ≈ 3.333 α1 ≈ 0.667

3 z2SW = 0 z2SE = 10 z2WN = 0 z2EN = 10
y3SW ≈ 3.333 y3SE ≈ 6.667 y3WN ≈ 3.33 y3EN ≈ 6.667 α2 = 0.5

4 z3SW = 10 z3SE = 0 z3WN = 10 z3EN = 0
y4SW ≈ 6 y4SE ≈ 4 y4WN ≈ 6 y4EN ≈ 4 α3 = 0.4

5 z4SW = 0 z4SE = 10 z4WN = 0 z4EN = 10
y5SW ≈ 4 y5SE ≈ 6 y5WN ≈ 4 y5EN ≈ 6 α4 ≈ 0.33

...
...

...
...

...
...

1000 z999SW = 10 z999SE = 0 z999WN = 10 z999EN = 0
y1000SW ≈ 5.005 y1000SE ≈ 4.995 y1000WN ≈ 5.005 y1000EN ≈ 4.995 α999 ≈ 0.002

Table 2.11.: The flows obtained by 1000 iterations of the Frank-Wolfe algorithm applied
on the left network of Example 2.5

2.4. Practical Considerations

We have seen some small examples of traffic networks in this chapter. However, if we
would want to apply traffic models in practice, there are several things we need to
consider.

2.4.1. Delay Functions

In the examples in this chapter, we have so far worked with simple delay functions like
linear functions. In reality, delay functions are not that simple. When the flow is not
too large, cars can more or less freely drive (without exceeding the maximum speed).
However, when the flow gets too large, there will be congestion and delay will increase
dramatically. The function that is often used to achieve this, is the BPR function. The
BPR function is developed by the Federal Highway Administration (FHWA), formerly
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known as the Bureau of Public Roads (BPR), which was introduced by Ryan (1979).
The BPR function is given by

Dj(yj) = tj ·

(
1 + αj

(
yj
cj

)βj
)
, (2.1)

where

• tj is the free flow travel time: the time it would take on edge j when there would
be no flow. It holds that tj =

sj
vj
, where sj is the length of road j, and vj is the

speed limit on road j.

• cj is the capacity of edge j.

• αj > 0 and βj > 0 are edge specific constants. Ryan (1979) proposes to put
αj = 0.15 and βj = 4, but this is calibrated for American highways.

In urban areas, typically the value of αj is larger. Roads have fewer lanes, so congestion
is more severe. This leads to small changes in the traffic flow to have large effects on the
travel time. Muijlwijk (2012) for example proposes αj = 2 for urban areas. In Figure
2.12, two BPR functions with different values for αj are shown.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
yj / cj

1.0

1.5

2.0

2.5

3.0

3.5

D
j(y

j)

Example of BPR functions with tj = 1
j = 0.15, j = 4
j = 0.5, j = 4

Figure 2.12.: Graph of two BPR functions

Note that the BPR function is not Lipschitz-continuous. However, if we restrict its
domain to some bounded set D, it is L-Lipschitz continuous with L = supy∈D ||D′

j(y)||.
In practice, this Lipschitz condition is therefore irrelevant, as we always work with
finite flows. The larger the L, the larger the curvature constant Cf . This means that
convergence is slower for larger L, but it is still of order O

(
1
n

)
, so in the long run this

makes no difference. In conclusion, we can still apply Theorem 2.9, and convergence to
the Wardrop equilibrium is assured when using the Frank-Wolfe algorithm.
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2.4.2. Behavior of the Road User

Up to this point, we have only made the assumption that drivers try to minimize their
own travel time. In this subsection, we briefly discuss more aspects of the behavior of
road users.

Route Choice

Until now we have only considered travel time as the sole explanatory variable for route
choice. However, there could be more explanatory variables for route choice. Bekhor,
Ben-Akiva, and Ramming (2006) and Cascetta et al. (2002) propose more possible ex-
planatory variables. Some other possible explanatory variables these two papers mention
are:

• Road capacity, length, and type;

• Socio-economic variables i.e. age, gender, income;

• Distance between OD pair (relative to the distance as the crow flies).

Note that the BPR function depends on road capacity and length. It also can depend,
through the parameters αj and βj in Equation 2.1, on road type. As the travel time
depends on the delay functions, when choosing delay functions as BPR functions, we
implicitly take road capacity, length, and type as explanatory variables already. For the
other possible explanatory variables either their significance is too small, or there is not
sufficient data. Therefore we argue that it is sufficient to indeed only consider travel
time as the sole (explicit) explanatory variable for route choice.
In practice a population can be heterogeneous: individuals can perceive travel times

differently. For example, one driver could only be interested in minimizing their travel
time, while another driver wants to choose a route with nice scenery and assigns less
importance to travel time. In this case, we can model the perceived delay of each route
as a random variable distributed across the population of drivers. We can achieve this
by adding some random noise term. To be more precise, let Dod

r be the delay a driver
encounters on route r between origin o and destination d, then the perceived delay is
given by

D
′od
r = Dod

r + ϵodr , ϵodr ∼ (0, σ2).

Route choice now basically reduces to a multinomial discrete choice model. In Chapters
10, 11, and 12 of Sheffi (1985), this is described in more detail and the author shows
there still exists an equilibrium in this case: the stochastic user equilibrium. When
σ2 = 0, the stochastic user equilibrium is the same as the Wardrop equilibrium. In
Chapter 12, the author argues that the Wardrop equilibrium is in general a very good
approximation of the stochastic user equilibrium for congested networks. Thus, we think
that it is sufficient to only consider the Wardrop equilibrium.

23



Parking Choice

Aside from choosing a route, drivers also have to choose a parking facility close to their
destination. Possible explanatory variables for parking choice are:

• Travel time;

• Park search time;

• Parking charge;

• Walking time from the parking facility to the destination;

• Capacity of the parking facility.

The total travel time for a driver from origin to destination is the sum of travel time,
park search time, and the walking time from the parking facility to the destination. It
will turn out that parking capacity and parking charges can implicitly be taken into
account when computing park search times. Therefore, we only take travel time, park
search time, and walking time to the destination as the (explicit) explanatory variables
for parking choice.
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3. Optimization

The goal of this thesis is to optimize parking capacities to decrease emissions, reduce
travel time, and limit the space used by parking facilities. Finding a solution to this
optimization problem analytically is computationally not feasible. Due to the underlying
traffic network, it is impossible to construct some differentiable objective function that
takes into account our three objectives.
Therefore, we need to make use of numerical optimization methods and metaheuristics.

In this chapter, we discuss these numerical optimization methods and metaheuristics. We
purely discuss optimization techniques in general, so not specifically applied to parking
capacities. Thus, suppose that our goal is to maximize some function f(x) over some
solution space X .

3.1. Grid Search

A naive numerical optimization method is grid search: define a grid of possible solu-
tions, try every solution on this grid, and choose the solution x∗ which maximizes f(x).
Restricted to this grid, grid search returns the exact optimizer, so as long as the solution
space X is finite, grid search can return the exact optimizer.

Unfortunately, if the grid contains too many points, grid search often becomes com-
putationally infeasible as well. In general, it is not possible to obtain an exact solution
to large optimization problems, even restricted to some bounded set. Often, algorithms
can only get a sufficiently good solution to an optimization problem in a reasonable time.
We call such methods metaheuristics.

3.2. Evolutionary Algorithms

In this section, we describe such a class of metaheuristics: evolutionary algorithms. This
chapter is mainly based on Chapters 3-6 of Negnevitsky (2011) and Chapter 7 of Eiben
and Smith (2003).
Evolutionary algorithms are based on biological evolution: there is a population with

limited resources, causing only the fittest to survive. This way, the fitness of the popula-
tion increases. Given a so-called fitness function that has to be maximized, we randomly
initialize a population of feasible solutions. Then based on these values, candidates with
high fitness are selected to create the next population. This is done by applying crossover
(which can be seen as parents getting children) and mutation (which can be seen as a
mutation in the DNA of an individual) to them. Generally, the population size is kept
equal over time. So unless the size of the offspring is equal to the size of the population,
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individuals from the old population also must be selected to survive. This process can
be repeated until a population containing a solution with sufficient fitness is found.
Formally, this leads to a general scheme for evolutionary algorithms, given by Algo-

rithm 3.1.

1 Randomly initialize a population with feasible solutions
2 Compute the fitness of each candidate
3 Select parents
4 Let crossover take place on the parents
5 Mutate the resulting children
6 Compute the fitness of the new candidates
7 Select candidates for the next population
8 if Termination criterion satisfied then
9 Terminate

10 else
11 Return to step 2
12 end

Algorithm 3.1: General scheme for evolutionary algorithms

We cannot always directly apply evolutionary algorithms to an optimization problem.
Sometimes, the solution space must be represented by some other space to make evo-
lutionary algorithms applicable. In the case of parking capacities, it will turn out later
that we can represent solutions by a sequence of positive integers. So without loss of
generality, we assume that the solution space is Nk

≥0 where k is some integer specifying
the dimension of the solution space.

3.2.1. Parent Selection

There are several techniques to select parents, we discuss the two most widely used ones:
selection proportional to fitness and selection based on rank.

Fitness Proportional Selection

When applying fitness proportional selection, individuals are chosen based on their fit-
ness value compared to the fitness values of other individuals. Concretely this means
that individual xi is chosen from a population of size N with probability

f(xi)∑N
j=1 f(xj)

.

There are some problems with this selection method:

• Firstly, individuals with very high fitness relative to other individuals, take over
the entire population very quickly. This can cause the algorithm to get stuck in a
sub-optimal solution, this is also known as premature convergence.
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• When fitness values are very similar, the selection is almost entirely uniformly
distributed. Having higher fitness then barely has any effect. So then although
convergence may take place, the mean population fitness only increases very slowly.

• The fitness proportional method is sensitive to translations. This is illustrated in
Table 3.2, which shows a population of two individuals, x1 and x2, with fitness
f(x1) = 1 and f(x2) = 9. Adding a constant to the fitness function does not
change the location of the optimum, but it does change the selection probabilities
drastically. In the original case, x2 is chosen with a much higher probability
than x1. However, when adding 100 to the fitness values, both have almost equal
probability to be chosen.

f(xi) sel. prob. f(xi) + 10 sel. prob. f(xi) + 100 sel. prob.

x1 1 0.1 11 0.367 101 0.481
x2 9 0.9 19 0.633 109 0.519

Table 3.2.: Adding a constant to the fitness function changes selection probabilities

A remedy often used to solve the last two problems, is a method called windowing. The
differences in fitness are kept by subtracting a (time-dependent) value βt from the fitness
values. The most simple choice is

βt = min
x∈Pt

f(x),

where Pt is the population at time t. Note when all fitness values are equal, we don’t have
to apply this windowing, as we would have uniformly distributed selection probabilities
regardless.

Ranking Selection

Rank-based selection is another method that was inspired by the problems that occur
when the fitness proportional selection method is used. This method sorts the population
based on their fitness values and assigns selection probabilities to individuals based on
their rank. Assume that the best solution in a population has rank N −1, and the worst
solution has rank 0, where N is again the population size.

In practice, we usually then compute selection probabilities based on a linear ranking
scheme. Explicitly, given a rank r of an individual and some parameter 1 < s ≤ 2, the
selection probability is given by

P s
lin(r) =

2− s

N
+

2r(s− 1)

N(N − 1)
.

The parameter s tells us how much emphasis we want to put on selecting individuals
with high fitness. This is called selection pressure. When s is close to 1, there is almost
no selection pressure: selection probabilities are close to uniform. When s is large, there
is more selection pressure: individuals with high rank have a higher selection probability.
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The selection pressure of a linear ranking scheme is limited, as s cannot be larger
than 2. When s is larger than 2, the worst individual would have a negative selection
probability. That is why another ranking scheme is proposed: an exponential ranking
scheme, given by

Pexp(r) =
1− e−r

c
,

where c is some normalizing constant.
In conclusion, ranking selection should be considered when fitness values are very close

to each other or very far away from each other, which the fitness proportional selection
cannot deal with properly as discussed before. A disadvantage of the ranking selec-
tion scheme compared to the fitness proportional selection scheme, is that the selection
pressure may not be appropriate, but the exponential ranking scheme could provide a
solution.

3.2.2. Crossover

The most used crossover technique is the one-point crossover. Let x1 = (x11, . . . , x
k
1)

and x2 = (x12, . . . , x
k
2) be two individuals. Let crossover take place with probability pc.

If crossover takes place, a random number r ∈ {1, . . . , k − 1} is chosen to split both
parents at that point to create two children by exchanging the tails. This results in
offset x′1 = (x11 . . . x

r
1, x

r+1
2 , . . . , xk2) and x′2 = (x12 . . . x

r
2, x

r+1
1 , . . . , xk1). An example of

this crossover is shown in Figure 3.3.


 
 
 
 
 
 
 
 
 
 


4 64
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9 7 3

Figure 3.3.: Example of one-point crossover with integer representation

3.2.3. Mutation

Mutation takes place as follows: in each position independently, with some mutation
probability pm, a new integer is chosen at random such that the mutated individual is
still part of the solution space. An example of such a mutation is shown in Figure 3.4.
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Figure 3.4.: Example of mutation with integer representation

3.2.4. Survivor Selection

In principle, the methods that are applied for parent selection can be used for survivor
selection. However, in practice, as opposed to parent selection, mostly deterministic
methods are used for survivor selection. There are two flavors: selection based on ’age’
and selection based on fitness.

Age-Based Selection

The principle of selection based on age is that individuals survive in a population for
a fixed amount of iterations. For this method of selection, fitness is completely irrele-
vant. Consequently, the mean and even the best fitness can decrease after an iteration.
Nonetheless, in the long run, this could even be beneficial: if the algorithm is stuck at
a local optimum, it can escape. It is however important that there is enough selection
pressure when selecting the parents.

Fitness-Based Selection

Contrary to age-based selection, the fitness-based selection makes use of the fitness of
each individual. Several different fitness-based selection methods are used in practice:

• Replace worst: In this method, we simply remove the individuals with the worst
fitness. This can lead to premature convergence though, as it tends to only select
the fittest individuals.

• (µ, λ)-selection: In this method, λ ≥ µ children are born from µ (in our case
N) parents. This method is a mixture of age-based and fitness-based selection.
The age-based component implies that parents are removed and thus that every
individual is considered only for one iteration. The fitness-based component implies
that the best µ children out of the λ children are chosen to be part of the new
population.
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3.2.5. Genetic Algorithm

The most widely used evolutionary algorithm is the genetic algorithm, which was in-
troduced by Holland (1975). In the genetic algorithm, the offspring is the same size as
the population. This also means that survivor selection is not necessary for the genetic
algorithm. In the simple genetic algorithm, fitness proportional selection is used to select
parents. Formally, this leads to the scheme given by Algorithm 3.5.

1 Randomly generate an initial population of size N of chromosomes: x1, . . . , xN
2 Compute the fitness of each chromosome: f(x1), . . . , f(xN )
3 Select a pair of chromosomes (y, z) from the population with

P(y = xi) = P(z = xi) =
f(xi)∑N

j=1 f(xj)

4 With probability pc apply crossover to (y, z) to create an offspring (y′, z′)
5 With probability pm apply mutation to (y′, z′) to create an offspring (y′′, z′′)

and add this to the new population
6 if #new population = N then
7 Continue
8 else
9 Return to step 3

10 end
11 Replace the population with the new population
12 if Termination criterion satisfied then
13 Terminate
14 else
15 Return to step 2
16 end

Algorithm 3.5: Simple Genetic Algorithm

The crossover probability pc is often chosen around 0.7, while the mutation probability
pm is often chosen around 1/N , where N is the population size. Other popular choices
for the mutation probability are 0.001 and 0.01. In general, it turns out that it can be
difficult to choose a suitable (fixed) mutation probability. That is why dynamic mutation
probabilities have been proposed, for example by Bäck (1992), where the mutation rates
are incorporated into the genetic representation of the individuals.
Lastly, as we have seen in Section 3.2, using the fitness proportional selection method

has some flaws. That is why variations on fitness proportional selection or other selection
methods could be considered as well.

3.3. Brief Overview of Other Methods

Aside from evolutionary algorithms, there are several other metaheuristics. In this sec-
tion, we briefly describe the most used ones and discuss the differences with evolutionary
algorithms.
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Hill Climbing

One of the most basic metaheuristics is hill climbing. The algorithm starts with some
random solution and iteratively tries to find a better solution by making a small incre-
mental change to the solution. If no increment can be made, the algorithm terminates,
and it returns a solution. Depending on the initial solution, most likely, this is a local
optimum and not a global optimum. Evolutionary algorithms on the other hand can
give an approximation of the global maximum.

Tabu Search

Another very popular metaheuristic is tabu search, introduced by Glover (1986). Tabu
search repeatedly moves from one solution to another solution in its neighborhood. A
neighborhood of a solution can be defined in different ways, for example when we work
with binary strings, a neighbor of a certain bitstring could be another bitstring with
one bit flipped. Generally, we choose a new solution in the neighborhood of a solution
if it outperforms all other solutions in this neighborhood. This means that it does not
have to outperform the current solution, contrary to hill climbing. This means tabu
search allows discovering new parts of the solution space, which makes it possible to
jump out of a local optimum. There is also a so-called tabu list with solutions that have
been chosen recently. These solutions cannot be chosen again for a certain amount of
iterations, which ensures that the algorithm does not jump back and forth between two
solutions.

Simulated Annealing

A more sophisticated form of tabu search is simulated annealing, which was proposed
by Kirkpatrick, Gelatt, and Vecchi (1983). This metaheuristic is inspired by annealing
in condensed matter physics. According to Wikipedia (2023b), in condensed matter
physics, annealing involves heating and controlled cooling to improve the physical prop-
erties of a material. When heating, atoms can move freely (move from solution to solution
freely), while when cooling the structure becomes more rigid (not every change in the
solution is allowed). In every iteration, the current solution is replaced by a neighboring
solution with some probability based on the difference in the objective function values
and the temperature T .
Initially, the temperature T is high and new solutions are chosen with high probability.

After every iteration, T is reduced. If the temperature decreases, the probability of
’bad’ solutions (solutions with relatively low objective function value) getting accepted,
decreases.

Comparison with Evolutionary Algorithms

Tabu search and simulated annealing only look at neighboring solutions every iteration,
while evolutionary algorithms consider a way more diverse possible offspring of solu-
tions. However, as the so-called No Free Lunch (NFL) theorems stated in Wolpert and
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Macready (1997) tell us, which method is the most accurate, depends on the problem
we consider. Some comparisons between metaheuristics have been made in past liter-
ature, see for example Manikas and Cain (1996), but those results only hold for very
specific types of problems. For optimization regarding parking capacities, comparisons
have not been made. On top of this, which method performs best can also depend on
the particular traffic network we consider.
A disadvantage of evolutionary algorithms is that it considers an entire population at

every iteration, which makes it computationally slower. This can be solved by paral-
lelizing evolutionary algorithms though.
In the end, we cannot determine which algorithm is better based on theory. Evolution-

ary algorithms are expected to cover more of the solution space as they consider an entire
population of solutions, and do not restrict themselves only to so-called neighboring so-
lutions. The computational disadvantages could be bypassed by parallel programming.
Thus, in this research, we stick with the evolutionary algorithm. However, we note

that it is not possible based on theory to determine if this is the best method. If it turns
out that the evolutionary algorithm does not provide the desired results, other methods
should be considered.
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4. Methodology

As stated in Chapter 1, we want to find a method to optimize parking capacities with
three main objectives: minimize emissions, minimize travel times, and minimize the use
of land for parking purposes. With the current model of traffic, we only obtain delays
and flows on every edge of a network. We can quantify each of the three objectives in
the following way:

• Distance: According to Csikós, Tettamanti, and Varga (2015), emissions can
be modeled based on the total distance covered by cars and the average speed.
With the current traffic model, we cannot compute the average speed. However,
distances can be computed using flows and lengths on every edge. Therefore, we
propose to use distance as a proxy for emissions.

• Travel times: Using the flows and delays on every edge, we can derive travel
times directly.

• Parking capacities: We take the total parking capacities as a proxy for land
used with the purpose of parking: the lower the parking capacities, the less space
parking facilities use.

We combine these three objectives into a single objective function, which we will give
explicitly in Section 4.2.

The general scheme of the methodology can then be seen in Figure 4.1. There are two
main components: the traffic and parking model and the optimization component.

Traffic and
Parking Model
(Section 4.1)

Optimization
(Section 4.2)

Objective
value

Capacities

SolutionNetwork

Figure 4.1.: General Scheme Methodology

In Section 4.1, we discuss the addition of parking to the current traffic model. The
idea is that the traffic and parking model is provided with some network. It returns both
the total delay and distance, then together with the total capacities, these can be used
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to compute the corresponding objective function. An optimization layer tries to find
parking capacities, such that the objective function is maximized. This optimization
layer is treated in Section 4.2.

4.1. Parking in Traffic Models

We have defined the basic traffic network and we have described how to solve a basic
traffic assignment problem both analytically and numerically in Chapter 2. In this
section, we will describe how we incorporate parking into the traffic model. We also
discuss the implications this has for solving the traffic assignment problem. This section
serves as an answer to sub-question 1 in Chapter 1.

4.1.1. Extending the Network with Parking Nodes and Links

We already defined a road network in Section 2.1. We will now extend these road
networks by adding parking facilities to the network. We said the road network can
be represented by a graph G = (V,J ), where V are the vertices and where J are the
directed edges of the graph. We said that the edges represent the roads in the network,
while the vertices represent the road intersections. For this reason, we now refer to V as
the set of intersection nodes.

We can extend this definition by adding a set of parking nodes Vp to V. Each park-
ing node belongs to one specific intersection node and represents a parking facility at
this intersection. Thus, using this definition, a parking node can only coexist with a
corresponding intersection node.
We also add the set of parking links Jp to J . These edges connect a regular intersection

node with the corresponding parking node.

1

2

3

4

5

6

Intersection Node

Parking Node

Regular Road

Parking Link

Figure 4.2.: Example of an (unweighted) road network with parking facilities incorpo-
rated

An example of such an extended network is given in Figure 4.2. Now if a driver wants
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to travel from node 1 to node 2, they have to park their car at node 2 as well. This is
represented by the corresponding parking node, node 5. The link between node 2 and
node 5 corresponds to the time it takes them to park their car at node 2, so it does not
correspond to travel time. We sometimes also call this the park search time.

4.1.2. Extending the Network with Walking Links

In reality, some parking facilities might be always full. In this case, it could be an
option for a driver to park their car at another node, and walk from that node to their
destination. To make this possible, we extend the network further.
We do this by adding a set of walking links Jw to J . These edges connect parking

facilities and represent walking routes between the corresponding intersection nodes. In
Figure 4.3, such an extension of the previous network is shown.

1

2

3

4

5

6

Intersection Node

Parking Node

Regular Road

Parking Link

Walking Link

Figure 4.3.: Example of an (unweighted) road network with parking facilities and walking
links incorporated

To summarize, we can represent a road network, with parking included, by a graph
G+ = (V+,J +), where V+ = V ∪Vp consists of the intersection nodes and corresponding
parking nodes and where J + = J ∪ Jp ∪ Jw consists of road links, parking links, and
walking links.
When we think about road networks in practice, it is not logical to put walking links

between every possible pair of parking nodes. Some nodes may be too far away from each
other. Therefore, we introduce a walking limit, wl. This walking limit is the maximum
length a walking link is allowed to be. The length is determined by the Euclidean distance
between two parking nodes, which is technically the Euclidean distance between the two
intersection nodes they correspond with.
We also want to reduce the number of drivers parking their cars somewhere and then

walking several kilometers by using multiple walking links. We can do this by not adding
a walking link between parking nodes where both facilities have a capacity equal to 0.
To avoid this phenomenon altogether, a change has to be made in computing the route
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with the shortest travel time. However, Dijkstra’s algorithm, which we use to compute
the shortest paths, is only able to take (static) weights into account.

4.1.3. Park Search Time and Walking Delay

We have defined both parking and walking links, but we have not covered the delays
we impose on these links. We continue by discussing the delays on parking and walking
links.

Park Search Time

We have defined park search time as the delay on a parking link. This park search time
can be defined in several ways. We choose the method proposed by Lam et al. (2006),
where the authors used the BPR functions we already use as road delays to model park
search time. However, the parameter αj as in Equation 2.1, is typically drastically
different compared to those used for road delays. When a parking facility is full, a car
has to wait for another car to leave the facility. On a road, when the capacity is reached,
there may be a traffic jam, but traffic normally still slowly continues. This means that
the parameter αj is typically much higher for the delay on parking links than for the
delay on road links.

Some researchers, for example Pel and Chaniotakis (2017), argue that it is necessary to
account for uncertainty in parking occupation by adding some stochastic elements. With
current technologies though, it is possible to retrieve live data of parking occupation.
An example is Gemeente Amsterdam (2023) which is an interactive map that shows the
occupation of parking facilities in the municipality of Amsterdam, the Netherlands. That
is why we would argue the inclusion of uncertainty is not necessary anymore, definitely
considering the fact that technologies will only improve in the (near) future, which will
only extend the knowledge drivers have about parking occupations.

Walking Delay

We also defined walking links. On these walking links, we assume the delay to be
constant, as in practice it does not depend on the flow. An obvious choice would be to
choose

Dj(yj) =
sj
vj
,

where sj is the length of the walking link and vj is some constant walking speed.

4.1.4. Wardrop Equilibrium and Frank-Wolfe Algorithm

Mathematically, we have only added nodes and links to the road network defined in
Section 2.1. As we use BPR functions for delays on both the road and parking links
and constants for the delays on walking links, delays are continuously differentiable and
increasing. For that reason, we can still apply Theorem 2.4 to conclude that a Wardrop
equilibrium exists.
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Furthermore, as we already argue in Section 2.4, we can restrict BPR functions to
some finite domain to make them L-Lipschitz continuous for some constant L. Moreover,
constant functions are 0-Lipschitz continuous. Therefore, we can still apply Theorem
2.9 to conclude that the Frank-Wolfe algorithm provides convergence to the Wardrop
equilibrium, even when parking is added to the traffic model.

4.2. Optimization of Parking Capacities

We have introduced optimization methods in general in Chapter 3. We continue by
discussing how to apply these methods to parking capacities to answer sub-question 2
stated in Chapter 1.

4.2.1. Formal Problem Statement

To solve this optimization problem, we will use variants of the evolutionary algorithms
which are described in Section 3.2. Later, we specify which variants we use exactly.
Remember that evolutionary algorithms are used to maximize some function, while we
now want to minimize three variables instead. Also, note that we want to compute
weights based on the fitness values when applying the evolutionary algorithm, That is
why it is important that the objective function values are always non-negative.
Suppose we have some network with parking as described in 4.1 which consists of n

nodes (without parking nodes). Then we can assign some capacities c = (c1, . . . , cn)
to every parking node, which will be used in the delay function of the corresponding
parking link. Consequently, we can obtain the Wardrop equilibrium using the Frank-
Wolfe algorithm, and we can compute both the total delay, say tc, and the total distance
covered by the car, say dc when the network is in equilibrium. This leads to the following
objective function:

f(c) =
1

w1 ·
∑n

j=1 c
j + w2 · tc + w3 · dc

,

where w1, w2, w3 are some (positive) weights that can be chosen based on the importance
of every quantity for for example a policymaker wanting to optimize parking capacities
in a certain area.
Note that maximizing this function is indeed equivalent to minimizing a weighted

average of the three variables, which was exactly our goal. Another way this is usually
achieved is to put a minus in front of the variables we want to minimize, but again, we
want to avoid negative objective function values. In general, an objective function of
the following type would work:

f(c) = g

w1 ·
n∑

j=1

cj + w2 · tc + w3 · dc

 ,

where g is a decreasing and positive function. We have now used g(x) = 1
x , but other

choices include g(x) = e−x or g(x) = xβ for any β < 0. The choice of g(x) = 1
x is the
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easiest to interpret, as it is an inverted weighted average of the variables of interest. If
it turns out that our choice is not suitable, we can try different decreasing and positive
functions.
It is obvious that this objective function is not easily differentiable in c as the variables

tc and dc depend on c through the underlying network structure. This indeed shows the
need for metaheuristics like evolutionary algorithms.

In practice, capacities are always positive and finite, so we assume that there is some
maximal capacity 0 < cmax < ∞. Furthermore, in practice, the number of parking
facilities is usually not equal to the number of intersection nodes n. So we also assume
there can be 0 ≤ nmax ≤ n parking facilities. It could also be the case that it is not
possible to have a parking facility at some of the intersection nodes. Therefore, we
introduce some subset B ⊂ {1, . . . , n}, which tells us at which intersection nodes it is
possible to add parking facilities. The exact optimization problem then becomes

maximize
1

w1 ·
∑n

j=1 c
j + w2 · tc + w3 · dc

subject to w1, w2, w3 ≥ 0, w1 + w2 + w3 > 0,

|{j : cj > 0}| ≤ nmax,

cj > 0 =⇒ j ∈ B,

over 0 ≤ cj ≤ cmax.

(4.1)

4.2.2. Evolutionary Algorithms for Parking Capacities

As mentioned earlier, we will use variants of the evolutionary algorithms to approximate
the solution of the maximization problem in Equation 4.1.

Representation

Independent of the choices we make for the evolutionary algorithm variants, the rep-
resentation of the solutions is the same for each method. We already said in Section
3.2 that we represent solutions as a sequence of integers. Specifically, a solution xi is
represented as follows:

xi = (x1i , . . . , x
n
i , x

n+1
i , . . . , xn+nmax

i )

:= (c∗1i , . . . , c∗ni , l1i , . . . , l
nmax
i ),

where 0 ≤ c∗ji ≤ cmax represents the parking capacity we would assign to a parking
facility corresponding to intersection node j and where lki ∈ B represents that parking
facility lki is actually considered. This can then be translated to the corresponding
capacities ci = (c1i , . . . , c

n
i ) with

cji =

{
c∗ji , if lki = j for some k ∈ {1, . . . , nmax},
0, otherwise.
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So for example, if we have n = 4, nmax = 3, B = {1, 2, 3, 4} and cmax = 5, a possible
solution would be

(5, 3, 4, 1, 1, 2, 4),

such that parking facilities at intersection nodes 1, 2, and 4 are considered with parking
capacities 5, 3, and 1. This also means that there is no parking facility at intersection
node 3. This is then translated to the capacity vector

c = (5, 3, 0, 1).

Parent Selection

We consider both the fitness proportional selection and ranking selection as described
in Subsection 3.2.1 to select parents. For ranking selection we now propose to set the
parameter s = 3

2 , so exactly between the two extreme values of 1 and 2. Beforehand,
it is not possible to establish which s works the best. Computationally, it is rather
demanding to consider several values of s. If it turns out this s does not provide good
performance, we can potentially consider other values.

Crossover

Crossover happens exactly as described in Subsection 3.2.2. We choose pc = 0.7, which
is the same crossover probability that is often chosen in the special case of the genetic
algorithm.

Mutation

Mutation happens exactly as in Subsection 3.2.3. Note that for some (mutated) solution
xi to be in the solution space, capacities c∗ji should still be between 0 and cmax and that

locations lji should still be in B. We choose pm = 1/N , where N is the population size.
This is the same mutation probability that is often chosen for the genetic algorithm.

Survivor Selection

For the survival selection, we combine fitness-based and age-based selection similar to
(µ, λ)-selection. Let pr be the proportion of the population that is replaced every iter-
ation. Then the best 1− pr part of the population survives to the next iteration, while
the other part of the population is replaced by offspring created by parent selection,
crossover, and mutation. When applying the genetic algorithm as described in Algo-
rithm 3.5, fitness proportional parent selection is used and pr = 1 is chosen. On the
other hand, when pr = 0, all solutions survive every iteration, and nothing happens.

We consider three values for pr. Firstly, we choose pr = 1 because this is the value of
pr in the genetic algorithm. We also choose a value of pr close to 1, namely 19

20 . Lastly,
we choose a more extreme value of pr, namely 1

2 . In this case, we keep the best half
of the solutions and replace the worst half in every iteration. As mentioned in Chapter
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3, the NFL theorems stated in Wolpert and Macready (1997) tell us that we can only
choose the best pr for one specific problem. As we are not considering one particular
urban area, we cannot choose one optimal value for pr. Instead, the goal is to give an
indication: does sticking to the genetic algorithm proposed by Holland (1975) provide the
most accurate solutions, or does deviating from it provide the most accurate solutions?
Can the same conclusion be made in different situations or does the conclusion vary in
different situations?

Number of Iterations and Population Size

As Negnevitsky (2011) argues, both the number of iterations and the population size
depend on the type of problem that needs to be solved. This depends mostly on the
solution space size and the objective function considered. In practice, these parameters
are chosen empirically. De Jong (1975) found out that a relatively small population size
improves performance in the beginning while a relatively large population size improves
long-term performance.
Eiben and Smith (2003) choose both the population size and the number of iterations

equal to 100 in one of their examples. This is why we also choose both the population
size and the number of iterations equal to 100. If it turns out that this choice causes
results to be unacceptable, we can consider changing these values.

Overview

The general framework for the variants of the evolutionary algorithms we consider is
given by Algorithm 4.4. A variant is completely determined by the selection method we
choose in step 3 and the replacement proportion pr.

1 Randomly generate an initial population x1, . . . , x100
2 for i = 1 to 100 do
3 Compute the fitness of each chromosome: f(x1), . . . , f(x100)
4 Select a pair of chromosomes (y, z) from the population using fitness

proportional or ranking selection
5 With probability pc apply crossover to (y, z) to create an offspring (y′, z′)
6 With probability pm apply mutation to (y′, z′) to create an offspring (y′′, z′′)

and add this to the new population
7 if #new population = pr ·N then
8 Continue
9 else

10 Return to step 3
11 end
12 Replace the worst pr ·N individuals of the old population with the new

population.
13 end

Algorithm 4.4: Evolutionary algorithm framework
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Table 4.5 summarizes the combinations of selection methods and replacement propor-
tions we consider.

Label Parent selection pr
fp 1 Fitness proportional 1

fp 19/20 Fitness proportional 19/20
fp 1/2 Fitness proportional 1/2
r 1 Ranking 1

r 19/20 Ranking 19/20
r 1/2 Ranking 1/2

Table 4.5.: Considered combinations evolutionary algorithm variants

4.2.3. Imposing Further Constraints

In practice, we may also want to assume an explicit limit on the total parking capacities
in the network. Right now, the limit is given by the maximum for a single parking
facility multiplied by the maximum number of parking facilities. In principle, a total
capacity that is too large is taken care of by a low fitness value, but it could be that a
policymaker already has an explicit global maximum in mind.
So suppose we want to impose some maximum, gm, on the sum of all capacities:

n∑
i=1

ci ≤ gm, gm > 0.

Unfortunately, the crossover and mutation operators that are used when applying
evolutionary algorithms can cause solutions to violate this restriction. We illustrate this
by looking at the following example. Consider a network with the following properties.

• Three intersection nodes, so n = 3;

• The maximal number of parking facilities, nmax = 2;

• The maximal capacity of every parking facility, cmax = 10;

• The subset of intersection nodes considered, B = {1, 2, 3};

• A global maximum on the parking capacities, gm = 15.

Two solutions for this problem can then be (10, 1, 1, 1, 2, 3) and (1, 7, 7, 1, 2, 3). An
example of offspring after crossover is then (10, 1, 7, 1, 1, 2, 3) and (1, 7, 1, 1, 2, 3). Now
notice that for the first of these two solutions, capacities sum up to 18, which is larger
than 15.
A remedy can be to give solutions that end up outside of our desired solution space

fitness equal to 0. In general, this approach can be applied to impose further restrictions,
so to assign fitness equal to 0 to solutions that do not satisfy these further restrictions.
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In practice, assigning a fitness of 0 to a solution can cause complications when com-
puting weights for the fitness proportional selection method. Therefore we assign a very
small fitness value to these infeasible solutions, namely 10−14. We choose this value
because, in Python, floats are 64 bits, with 53 bits of precision. This means a precision
of about 15 to 17 significant decimal digits. Hence leading to our choice of 10−14, which
consists of exactly 15 decimal digits. A more extensive explanation about the precision
of floats is provided by Wikipedia (2023a). Obviously, we need to make sure fitness val-
ues are nowhere near this value though. Otherwise, a different type of objective function
should be considered.

4.3. Implementation

We proceed with discussing the implementation of both the parking and traffic simulation
and the optimization of parking capacities. The general scheme of the implementation is
shown in Figure 4.6. All components are implemented in Python. We make a distinction
between the two layers shown in Figure 4.1, namely the traffic and parking model and
the optimization component.

Traffic
Network

Traffic
Network +
Parking

Frank-
Wolfe

Algorithm

Objective
Function

Evolutionary
Algorithm

Capacities
Total delay

Total distance

κ
Nodes
Edges

OD pairs
wl

Restrictions
Number of iterations

Population size
Selection methods

w1, w2, w3

Further
restrictions

Capacities

Solution

Fitness

Traffic and
Parking Model

Optimization

Figure 4.6.: Scheme of implementation
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4.3.1. Traffic and Parking Model

In the traffic and parking model, first, a basic traffic network needs to be created. This
is achieved by translating nodes, edges, and OD pairs into a graph. Thereafter, parking
nodes, parking links, and walking links can be added via the procedure described in
Section 4.1. To do this, we also provide the walking limit parameter, wl. Capacities of
the parking nodes are provided by the optimization layer. Then to assign flows to every
link, the Frank-Wolfe algorithm can be applied to compute the Wardrop equilibrium.
When applying the Frank-Wolfe algorithm, it is necessary to define the parameter κ in
Algorithm 2.7. Remember that this parameter is used to define a stopping criterion.
We want to choose this value as small as possible to get as close to the actual Wardrop
equilibrium as possible, but executing the Frank-Wolfe algorithm should still be com-
putationally feasible. This depends on the size and complexity of the network that we
apply the algorithm to.

Parallelizing the Frank-Wolfe Algorithm

As described in Section 2.3, when applying the Frank-Wolfe algorithm, in every iteration,
an all-or-nothing assignment is determined. This is done by computing the shortest path
for every OD pair. Computationally, this can be very demanding. To potentially speed
these computations up, we can apply parallel computing. However, when we use Python,
we are dealing with the Global Interpreter Lock (GIL). The GIL allows only one thread
to be executed at a time. Instead of creating multiple threads, it is possible to create
multiple Python processes by using the Multiprocessing library. Parallel computing is
then still technically possible, but to really exploit the power of parallel programming,
a different language like C++ should be considered.
To analyze if we can still gain performance by using the Multiprocessing library in

Python, we implemented a parallel version of the Frank-Wolfe algorithm. We compared
this parallel version with the basic version by considering three random networks of 50,
100, and 200 nodes. For these networks, we added 10, 20, and 40 OD pairs respectively.
Also, we made sure that there was at least one route possible for every OD pair. We put
κ equal to 0.5, to limit computation time. This only influences the number of iterations,
while parallelization happens only in individual iterations. The computation times for
both versions of the Frank-Wolfe algorithm are presented in Table 4.7.

Method 50 nodes/10 OD pairs 100 nodes/20 OD pairs 200 nodes/40 OD pairs

Parallel 9.37s 25.06s 296.4s
Basic 0.56s 4.43s 50.56s

Table 4.7.: Computation times of the parallel and basic Frank-Wolfe algorithm for the
different network sizes

We see that the basic Frank-Wolfe algorithm is computationally faster. Of course, the
more OD pairs, the more computations have to be made. So, we would expect that the
performance of the parallel Frank-Wolfe algorithm improves relative to that of the basic
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Frank-Wolfe algorithm as the number of OD pairs increases. However, at some point,
as the number of processes that can run simultaneously is limited, this improvement
will stop. It seems like the parallel algorithm does relatively better when going from 50
to 100 nodes. However, it does relatively the same when going from 100 to 200 nodes.
Hence, it seems like parallelizing the Frank-Wolfe algorithm in Python does not provide
us with any computational benefits no matter how large the network we consider.
In the remainder of this thesis, we keep κ = 0.5 to let computation time not get

unreasonably high. When using the evolutionary algorithm, the Frank-Wolfe algorithm
has to be applied 100 · 100 = 10000 times. For the example with 50 nodes this would
then already take roughly 5000 seconds, so more than an hour.

4.3.2. Optimization

Using the flows obtained by applying the Frank-Wolfe algorithm, we can compute both
total delay and total distance in the network. These two values, together with the total
capacities, are used to compute the fitness. To define an objective function, we need
to provide weights w1, w2, w3. Moreover, there might be further restrictions we want to
impose as described in Subsection 4.2.3 by setting the fitness equal to 10−14. Also, it
could happen that choosing certain capacities, particularly a lot of capacities equal to
zero, causes routes between certain OD pairs to not exist. In this case, this solution is
infeasible, and we set the fitness value equal to 10−14.

The fitness is then passed along to the evolutionary algorithm to determine new ca-
pacities, that potentially yield a higher fitness. To apply the evolutionary algorithm, it
is necessary to establish the restrictions on the solutions as in Equation 4.1, the number
of iterations, the population size, and the selection methods for both parent and survivor
selection as described in Subsection 4.2.2.
In conclusion, as illustrated by Figure 4.6, there are two interacting layers, the traffic

and parking model, and the optimization layer. The components inside each layer have
been treated separately, and in this section, we have discussed how to put them together.

44



5. Experiments

In this chapter, we apply the proposed methods displayed in Table 4.5 to different
examples. We start by applying each method on a small example network of nine nodes.
We continue by considering an even smaller network of seven nodes, such that it is
possible to validate the results obtained by the methods by comparing them with the
actual optimum obtained by grid search. We also consider several different situations to
check if the methods are robust to changes in the weights of the objective function and
in the optimization constraints. Lastly, we provide a case study of the city of Delft in
the Netherlands.

5.1. Scenario 1: Small Example Network

We start by evaluating the different methods on the network given by Figure 5.1. The
distance between neighboring nodes is chosen as 1 km. We put wl = 1, such that a
walking link is possible between every pair of neighbors. As discussed in Subsection
4.1.2, a walking link can only be added when the capacity of one of the two neighboring
parking facilities is non-zero. The network consists of three OD pairs shown in Table
5.2.

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

Figure 5.1.: Scenario 1: Grid network
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As discussed in Section 2.4, we use a BPR function with parameters αj = 2 and βj = 4
as the delay on road edges. Furthermore, we impose a maximum speed of 50 km/h on
the roads. As the total demand is equal to 1000, we set the capacity of every road equal
to 1000, such that all roads are equally as accessible for every driver.
In Subsection 4.1.3, we argued we can use a BPR function for the park search times as

well. We choose a free-flow travel time equal to 1
30 such that parking in an empty parking

facility takes 2 minutes. We also argued that αj is typically higher for parking links, so
we choose αj = 9, while we keep βj = 4. These parameter values are chosen arbitrarily.
In practice, these parameters can be chosen for example by using available parking data
of a certain urban area. The parking capacities are chosen by the evolutionary algorithm.
Lastly, we choose the walking speed equal to 4 km/h, such that there is a constant delay
of 1

4 on the walking links. The delays on the different types of roads are presented in
Table 5.3.

OD pair Demand

(1, 3) 200
(1, 7) 200
(1, 9) 600

Table 5.2.: OD matrix for scenario 1

Type Dj(yj)

Road 1
50 ·

(
1 + 2

( yj
1000

)4)
Parking 1

30 ·
(
1 + 9

(
yj
cj

)4)
Walking 1

4

Table 5.3.: Delays on the different edges
for scenario 1

We move on to the optimization layer. Weights are all chosen equal to 1. As we
discussed before, weights only have meaning when a user is involved. We consider all
nine parking nodes in our optimization. Lastly, we impose a maximum capacity on every
parking facility of 500, and a global maximum of 4500 (which effectively is redundant).
The optimization restrictions are shown in Table 5.4. We choose both the number of
iterations and the population size equal to 100, as argued in Subsection 4.2.2.

(w1, w2, w3) nmax cmax B gm

Scenario 1 (1,1,1) 9 500 {1,2,3,4,5,6,7,8,9} 4500

Table 5.4.: Optimization restrictions for scenario 1

The resulting solutions for every method with their corresponding fitness values are
given in Table 5.5. In Figures 5.6, 5.7, 5.8, 5.9, 5.10, and 5.11 the fitness, total capacity,
total delay, and total distance for the best solution in every iteration are plotted.
We see that the solutions obtained by the methods fp 19/20, fp 1/2, r 19/20, and r 1/2

have similar fitness values. The fitness of the solution found using r 1 is also still close
to the fitness values of the solutions found with these four methods, but for the method
fp 1 the obtained fitness value is significantly smaller than for the other methods. This
might be explained by the fact that the fitness values of individuals are close to each
other, in which case fitness proportional parent selection is less appropriate. Apparently,
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Method Solution Fitness

fp 1 (0, 418, 240, 9, 221, 144, 0, 0, 0) 0.000271
fp 19/20 (490, 229, 12, 223, 0, 0, 0, 0, 12) 0.000382
fp 1/2 (480, 25, 52, 341, 0, 0, 0, 17, 0) 0.000372
r 1 (205, 234, 0, 498, 0, 0, 0, 5, 0) 0.000356

r 19/20 (470, 2, 0, 476, 0, 0, 0, 3, 0) 0.000384
r 1/2 (489, 162, 0, 242, 16, 0, 0, 0, 2) 0.000383

Table 5.5.: Results for the different evolutionary algorithms

when keeping a fraction of the best solutions in every iteration for the next iteration (so
pr ̸= 1), this difference between fitness proportional and rank selection does not occur.
Looking at the plots, we observe for the methods fp 1 and r 1 that the fitness value

of the best solution in each iteration decreases in some cases. This is because every
iteration, the entire population is replaced by the offspring. Furthermore, it seems like
the fitness values for the solutions using fp 19/20 and r 19/20 increase faster than for
the solutions using fp 1/2 and r 1/2 respectively.

At first glance, the solutions may seem a bit strange. Firstly, mostly the parking
facilities close to the origin instead of the destinations are used. An explanation is that
the distance covered by car significantly decreases as people have to walk more. This in-
creases the travel time, but apparently, the decrease in distance is larger, which highlights
the trade-off between the three variables. We observe this decrease in total distance and
increase in total delay in the plots as well. Secondly, to make walking possible, at least
the capacities for either the parking nodes corresponding to the neighboring nodes of
the destinations, or for the parking nodes corresponding to the destinations themselves,
should be chosen non-zero. Otherwise, for at least one of the OD pairs, there would not
be a possible road, as there is no walking link between parking nodes that both have
a capacity of 0. This gives some unwanted behavior as now capacities close to 0 are
chosen, just to allow drivers to walk from a node close to the origin to the destination.
A naive and intuitive solution in this scenario would be to divide 1000 parking spots

over the parking facilities corresponding to nodes 3, 7, and 9. Ideally, based on the OD
matrix, we would want to assign 200 parking spots to the parking nodes corresponding
to nodes 3 and 7 and 600 parking spots to the parking nodes corresponding to node 9.
However, as there is a maximum of 500 parking spots, we could instead assign 250 and
600 parking spots respectively. This solution, (0, 0, 250, 0, 0, 0, 250, 0, 500), has a fitness
of roughly 0.0002132, which is significantly smaller than the fitness values obtained by
our proposed methods.
In conclusion, it seems like all the methods, except for fp 1, provide a method to

find parking capacities yielding a high value of the objective function of Equation 4.1.
However, we don’t know how close the obtained solutions are to the actual optimal
solution. On this small example network, it is already computationally infeasible to
apply grid search to find the exact optimum. To be able to achieve this, a smaller
network should be considered, which is done in the next section.
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Figure 5.6.: Fitness, total capacity, total delay, and total distance for method fp 1
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Figure 5.7.: Fitness, total capacity, total delay, and total distance for method fp 19/20
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Figure 5.8.: Fitness, total capacity, total delay, and total distance for method fp 1/2
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Figure 5.9.: Fitness, total capacity, total delay, and total distance for method r 1
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Figure 5.10.: Fitness, total capacity, total delay, and total distance for method r 19/20
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Figure 5.11.: Fitness, total capacity, total delay, and total distance for method r 1/2
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5.2. Scenario 2: Validation and Robustness

We continue by applying our proposed methods as described in Table 4.5 to different
scenarios. For each scenario, we compare the obtained solutions to the optimal solution.
To be precise, we apply the proposed methods 50 times and then we compare the fitness
values of the solutions obtained by these experiments with the optimal fitness values
obtained using grid search. We do this by looking at the sample means and standard
deviations and by looking at the sample quantiles using boxplots. As mentioned before,
performing a grid search is computationally infeasible for the network shown in Figure
5.1. Therefore, we need to consider a smaller network which we will specify later.
We start by applying the methods in a baseline scenario. We then test if our proposed

methods are robust to changes in the objective function weights. This robustness check is
done to see how the proposed methods deal with the difficult trade-off between the three
variables we want to minimize, namely total distance covered by cars, total travel times,
and total capacities. Also, we check what happens when we change the optimization
restrictions. In particular, when we enforce a global maximum on the total parking
capacities. As described in Subsection 4.2.3, this is dealt with by setting fitness values
of infeasible solutions equal to 10−14. The question is if our proposed methods are able
to deal with this ’trick’. Lastly, we check what happens when a particular parking
facility is not considered. In particular, a parking facility that is normally included in
the optimal solution. This leads to the following six different scenarios: one baseline
scenario, three scenarios where we put more weight on one of the three variables in the
objective function, one scenario where we impose a global maximum, and one scenario
where we do not consider one particular parking facility. In all scenarios, just like in
scenario 1, we choose both the number of iterations and the population size equal to
100.
As we discussed, to be able to validate the results obtained by the proposed methods,

we consider a smaller network, which is given by Figure 5.12. The coordinates of every
node are given in Table 5.13, from which the length of every road can be deduced. We
set the walking limit wl = 1, such that walking links can only be added as in Figure
5.12. Again, when two neighboring parking facilities both have a capacity of 0, a walking
link does not get added though. The network consists of three OD pairs shown in Table
5.14. The demands are very small, to make sure grid search is computationally feasible.

We choose the delays on the links almost exactly as in the previous section, but now
the edges have different lengths instead of only length 1. Also, as the total demand is
equal to 12 instead of 1000, we choose a capacity of 12 for every road. Again, this choice
is made to ensure that all roads are equally as accessible for every driver. For clarity, the
delays on every edge are presented again in Table 5.15, with the delays slightly altered
compared to the previous section, where sj is the length of edge j.
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Figure 5.12.: Scenario 2: Star network

Node Coordinate

1 (0, 0)
2 (2, 1)
3 (2, 0)
4 (2, -1)
5 (-2, 1)
6 (-2, 0)
7 (-2, -1)

Figure 5.13.: Coordinates of the
nodes

OD pair Demand

(1, 2) 2
(1, 4) 5
(1, 6) 5

Table 5.14.: OD matrix for scenario 2

Type Dj(yj)

Road
sj
50 ·

(
1 + 2

( yj
12

)4)
Parking 1

30 ·
(
1 + 9

(
yj
cj

)4)
Walking

sj
4

Table 5.15.: Delays on the different
edges for scenario 2

In scenario 1 we concluded that all methods except the method fp 1 are able to
find parking capacities to obtain high objective function values. We argued that this
shortcoming of fp 1 is potentially caused by both the entire population being replaced
by the offspring in every iteration and the fitness values of the individuals being very
close to each other. We also saw that the method r 1 performs slightly worse compared
to the other four methods. In the case of the method r 1, this is also potentially caused
by the entire population being replaced by the offspring in every iteration. Therefore, we
expect similar conclusions for scenario 2. However, as the considered network is smaller,
fitness values should be larger, and thus fitness values may not be as close to each other
as in scenario 1. So potentially, the method fp 1 may not perform as badly compared to
the other methods as it did in scenario 1.
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5.2.1. Scenario 2a: Baseline

We start with the baseline scenario. We set all weights equal to 1. We apply a maximum
of three parking facilities with a maximum capacity of 10. The global maximum is equal
to 30 (so technically redundant) and we consider every possible location for the parking
facilities. The optimization restrictions are summarized in Table 5.16.

(w1, w2, w3) nmax cmax B gm

Scenario 2a (1,1,1) 3 10 {1,2,3,4,5,6,7} 30

Table 5.16.: Optimization restrictions for scenario 2a

The sample means and standard deviations of the obtained fitness of every method
are shown in Table 5.17. The boxplot showing the sample quantiles is given in Figure
5.18. We see that the mean fitness values obtained by all methods are close to the
optimal fitness value. The boxplot also suggests that all methods can appropriately find
a solution with fitness close to the optimum.

Method Mean Fitness Standard deviation

fp 1 0.02358 0.00015
fp 19/20 0.02366 0.00003
fp 1/2 0.02365 0.00004
r 1 0.02359 0.00018

r 19/20 0.02365 0.00006
r 1/2 0.02365 0.00005

Grid search 0.02370 -

Table 5.17.: Summary of the resulting fitness values for scenario 2a

Fitness
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0.0232

0.0234

0.0236

Va
lu

e

fp_1 fp_19/20 fp_1/2 r_1 r_19/20 r_1/2 grid search

Figure 5.18.: Boxplot of the resulting fitness values for scenario 2a
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5.2.2. Scenario 2b: More Importance on Capacities

In this scenario, we keep everything the same as in Scenario 2a, but now we increase
the importance of the capacities by setting the corresponding weight equal to 3. The
optimization restrictions are summarized in Table 5.19.

(w1, w2, w3) nmax cmax B gm

Scenario 2b (3,1,1) 3 10 {1,2,3,4,5,6,7} 30

Table 5.19.: Optimization restrictions for scenario 2b

The sample means and standard deviations of the obtained fitness of every method are
shown in Table 5.20. The boxplot showing the sample quantiles is given in Figure 5.21.
Just as in the baseline scenario, these results suggest that all methods can appropriately
find a solution with fitness close to the optimum. However, it is clear that the method
fp 1 is the least appropriate method in this scenario.

Method Mean Fitness Standard deviation

fp 1 0.01537 0.00022
fp 19/20 0.01552 0.00010
fp 1/2 0.01546 0.00017
r 1 0.01550 0.00010

r 19/20 0.01550 0.00014
r 1/2 0.01548 0.00016

Grid search 0.01556 -

Table 5.20.: Summary of the resulting fitness values for scenario 2b

Fitness
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Figure 5.21.: Boxplot of the resulting fitness values for scenario 2b
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5.2.3. Scenario 2c: More Importance on Travel Time

Instead of increasing the importance of the capacities, we now increase the importance of
the total delay by assigning a weight of 3 to this variable. The optimization restrictions
are summarized in Table 5.22.

(w1, w2, w3) nmax cmax B gm

Scenario 2c (1,3,1) 3 10 {1,2,3,4,5,6,7} 30

Table 5.22.: Optimization restrictions for scenario 2c

The sample means and standard deviations of the obtained fitness of every method
are shown in Table 5.23. The boxplot showing the sample quantiles is given in Figure
5.24. Once more, these results suggest that all methods are able to obtain a solution
with a fitness value close to the optimum. The method fp 19/20 was even able to do so
50 out of 50 times. In this scenario, the methods fp 1 and r 1 clearly seem to be less
appropriate than the other four methods.

Method Mean Fitness Standard deviation

fp 1 0.02025 0.00036
fp 19/20 0.02076 0
fp 1/2 0.02071 0.00015
r 1 0.02042 0.00043

r 19/20 0.02074 0.00009
r 1/2 0.02066 0.00023

Grid search 0.02076 -

Table 5.23.: Summary of the resulting fitness values for scenario 2c

Fitness
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Figure 5.24.: Boxplot of the resulting fitness values for scenario 2c
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5.2.4. Scenario 2d: More Importance on Distance

Instead of increasing the importance of the capacities or the importance of the total
delay, we now increase the importance of the total distance by assigning a weight of 3
to this variable. The optimization restrictions are summarized in Table 5.25.

(w1, w2, w3) nmax cmax B gm

Scenario 2d (1,1,3) 3 10 {1,2,3,4,5,6,7} 30

Table 5.25.: Optimization restrictions for scenario 2d

The sample means and standard deviations of the obtained fitness of every method
are shown in Table 5.26. The boxplot showing the sample quantiles is given in Figure
5.27. We get a similar conclusion as in scenario 2b: from all methods a solution can be
obtained with fitness close to the optimum, but it is clear that the method fp 1 is the
least appropriate method in this scenario.

Method Mean Fitness Standard deviation

fp 1 0.01103 0.00006
fp 19/20 0.01107 0.00002
fp 1/2 0.01107 0.00002
r 1 0.01107 0.00004

r 19/20 0.01107 0.00001
r 1/2 0.01107 0.00002

Grid search 0.01107 -

Table 5.26.: Summary of the resulting fitness values for scenario 2d

Fitness
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Figure 5.27.: Boxplot of the resulting fitness values for scenario 2d
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5.2.5. Scenario 2e: Restricted Global Maximum

In this scenario, we keep everything the same as in the baseline example, except that the
global maximum is put to 25. The optimization restrictions are summarized in Table
5.28.

(w1, w2, w3) nmax cmax B gm

Scenario 2e (1,1,1) 3 10 {1,2,3,4,5,6,7} 25

Table 5.28.: Optimization restrictions for scenario 2e

The sample means and standard deviations of the obtained fitness of every method are
shown in Table 5.29. The boxplot showing the sample quantiles is given in Figure 5.30.
Note that the optimum is the same as in scenario 2a. We can draw the same conclusions
as for scenario 2a: all methods can appropriately find a solution with fitness close to the
optimum. However, the methods do perform slightly worse compared to scenario 2a.

Method Mean Fitness Standard deviation

fp 1 0.02353 0.00021
fp 19/20 0.02366 0.00005
fp 1/2 0.02363 0.00019
r 1 0.02361 0.00010

r 19/20 0.02365 0.00006
r 1/2 0.02364 0.00007

Grid search 0.02370 -

Table 5.29.: Summary of the resulting fitness values for scenario 2e

Fitness
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Figure 5.30.: Boxplot of the resulting fitness values for scenario 2e
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5.2.6. Scenario 2f: Restrict to a Subset

Lastly, it turns out that in every scenario, the parking facility corresponding to node
6 gets assigned non-zero capacity in the optimum computed by grid search. That is
why we also consider a case where we exclude this parking facility. The optimization
restrictions are then presented in Table 5.31.

(w1, w2, w3) nmax cmax B gm

Scenario 2f (1,1,1) 3 10 {1,2,3,4,5,7} 30

Table 5.31.: Optimization restrictions for scenario 2f

In this scenario, it turns out two optimal solutions exist, which makes it an interesting
robustness check. The sample means and standard deviations of the obtained fitness of
every method are shown in Table 5.32. The boxplot showing the sample quantiles is
given in Figure 5.33. Also in this last scenario, we can conclude that all methods are
able to produce solutions with fitness values close to the optimal fitness value.

Method Mean Fitness Standard deviation

fp 1 0.02233 0.00006
fp 19/20 0.02236 0.00003
fp 1/2 0.02236 0.00004
r 1 0.02234 0.00004

r 19/20 0.02236 0.00004
r 1/2 0.02236 0.00005

Grid search 0.02240 -

Table 5.32.: Summary of the resulting fitness values for scenario 2f

Fitness
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Figure 5.33.: Boxplot of the resulting fitness values for scenario 2f
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5.2.7. Conclusions

By comparing with grid search, we can conclude that all methods can give solutions
with fitness values close to the optimal fitness value in different scenarios of the simple
network presented in Figure 5.12. It seems like in some scenarios the methods fp 1 and
r 1 obtain solutions with on average smaller fitness values compared to the other four
methods. Looking at the boxplots, we also see that this is not only due to some negative
outlier, but that these two methods just perform worse than the other four methods in
these scenarios.
Furthermore, there may not be a big difference in the resulting fitness values of the

other four methods, but it does seem like the method fp 19/20 does the best job. In
all scenarios, there is no method with a larger mean fitness value. Only in scenario 2d
the method r 19/20 has a slightly smaller standard deviation, but in all other scenarios,
the standard deviation of the fitness values obtained by the method fp 19/20 are the
smallest.
As we predicted, the higher fitness values with potentially larger differences between

the fitness values of individuals cause the method fp 1 to perform not as badly compared
to the other method as in scenario 1. However, in scenarios 2b and 2d, where fitness
values are significantly smaller than in the other scenarios, this difference in performance
between fp 1 and the other methods is again clearly visible. The results in scenario 2c
are a bit surprising though. Travel time is the variable that is subjected to change the
most though, as a small change in parking capacities can have a large effect on the park
search time and therefore also the travel time. So it could be possible that replacing the
entire population with the offspring in every iteration is punished more severely. This
then would cause the methods fp 1 and r 1 to perform significantly worse than the other
four methods in this scenario.
In conclusion, the four methods fp 19/20, fp 1/2, r 19/20, and r 1/2 are all very

suitable to optimize parking capacities in the case of this small example network. It
seems like the method fp 19/20 is the most appropriate method based on the results on
this small network.

However, the results seem to suggest that when fitness values become smaller, they
also become closer to each other. For larger networks, fitness values will become smaller,
as travel times, distances, and parking capacities generally increase. For this reason, it
could be beneficial to use a ranking selection scheme for the parent selection instead, so
then the method r 19/20 might be the most suitable. In the end though, as we have
argued multiple times throughout this thesis, because of the NFL theorems, this does
not mean by default that these methods can get similar performance on other networks.
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5.3. Scenario 3: Case Study of Delft, the Netherlands

We end this chapter by applying (some of) our methods to a real-life example, namely
the city of Delft in the Netherlands. We concluded when applying our methods to the
smaller example networks that the methods fp 19/20 and r 19/20 were the most suitable.
In this section, we want to find out if these methods can also successfully be applied to
the real-life network of Delft.
As we discussed before, by using Python, we cannot successfully parallelize the Frank-

Wolfe algorithm. Therefore, applying it to a network like the city of Delft would be
computationally infeasible with our current implementation of the traffic and parking
model.
For this reason, we use the implementation of the traffic and parking model of Delft

provided by TNO. In other words, we replace our own implementation with the imple-
mentation of TNO. However, we do not change anything about the optimization part.
This leads to an adjusted scheme for the methodology which is given by Figure 5.34.

Traffic and
Parking Model
Delft (TNO)

Optimization
(Section 4.2)

Objective
value

Capacities

Solution

Figure 5.34.: Adjusted Scheme for Case Study

5.3.1. Traffic and Parking Model Delft (TNO)

The implementation of the traffic model of Delft by TNO does have a lot of similarities
with our implementation. We briefly discuss this implementation and how it compares to
ours. First, the network of Delft is translated into a graph. However, the implementation
of TNO also takes into account the structure of the network, so for example turns. The
resulting network consists of 1490 nodes and 2887 edges. The delay functions on the
edges are still BPR functions but with different parameters specifically chosen for Delft.
On top of this, 25 zones are defined and every zone gets assigned a certain node, which
can be interpreted as the center of the zone. There are 625 OD pairs based on real data
of travelers in Delft, but values are scaled, so do not represent reality directly. OD pairs
consist of an origin zone and a destination zone.

Parking is also added to the traffic model of TNO, but this addition is still at an
early stage. In every zone, a parking node gets added which represents the aggregate
of parking facilities in that particular zone. Just as in our implementation, a BPR
function is also used for the park search time, also with different parameters than for

60



the roads. These parameters are not calibrated yet specifically for Delft though. By
default, the capacity of every parking facility is equal to 10000. Obviously, these are
not the real parking capacities of the network of Delft, this is still a shortcoming of this
implementation. Moreover, as the implementation is right now, it is only possible to
change five parking capacities simultaneously.
Just like our implementation, the implementation of TNO does also allow walking

links between parking facilities. Also in the implementation of TNO, a walking limit is
imposed, and this limit is 1 km.
To compute the Wardrop equilibrium, the implementation of TNO uses the Frank-

Wolfe algorithm just as our implementation uses. However, in the case of the implemen-
tation of TNO, the Wardrop equilibrium gets updated when certain aspects, like parking
capacities, are adjusted. So in the beginning flows are computed for some base situation,
and every time when parameters get updated, flows get adjusted with the current flows
as a starting point. In our implementation, the Wardrop equilibrium is computed from
scratch every time.
Although this implementation makes it possible for us to apply our optimization meth-

ods to the real-life example of Delft, there are some issues we need to consider:

• Destination of travelers: The overwhelming majority of drivers want to travel
out of Delft. These drivers most likely want to travel to cities like Rotterdam, the
Hague, or maybe even Amsterdam. Their destination is then a zone at the edge of
Delft, but obviously, they would not have to park there. We would want to know
the trip purpose of every driver and incorporate this into the model.

• Limitations of parking model: As we already mentioned, the addition of park-
ing in the implementation of TNO is still at an early stage. We would prefer to
use the actual parking capacities in a zone instead of the 10000 that is chosen by
default now. Furthermore, we would want to be able to change all 25 parking
capacities at the same time instead of only 5.

• Handling invalid OD pairs: When the parking capacity of a certain zone is
equal to 0 and there is no walking link with another zone, a route to that zone
does not exist. The implementation of TNO then ignores all the OD pairs with
this zone as the destination and computes the Wardrop equilibrium without these.
However, our current optimization method needs to know when this occurs.

• Computational Limitations: The way the Wardrop equilibrium gets computed
does not allow us to parallelize the evolutionary algorithm. There is only one in-
stance of the network and we cannot compute multiple equilibria simultaneously.
This is not an issue right now as we have not parallelized our evolutionary algo-
rithms, as Python does not allow us to. However, this can be an issue when we
want to speed up our implementation by parallelizing it using C++ for example.

Regardless of these issues, we can still apply our implementation of parking capacity
optimization to this traffic and parking model of Delft and find out if it can actually be
applied to real-life cases. We move on to describing the actual case we will consider.
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5.3.2. Case Description

As we discussed, we can only optimize over 5 out of the 25 zones. We consider 4 zones
close to or inside the city center of Delft, namely zone 9, 10, 11, and 12. These zones are
illustrated in Figure 5.35. Table 5.36 presents the (scaled) total demand for each zone
as a destination, while Table 5.37 shows whether there is a walking link between zones
or not. The position of zone 12 may suggest that it is a zone where drivers leave Delft.
Yet, the drivers have to leave Delft through other zones where they can leave the ring
road around Delft (zones 1, 3, 4, 6, 7, and 22). So if they use zone 12 to leave the center
of Delft, they still have to go to one of these zones from there, and this would be their
destination zone. Moreover, there are also zones on the right of zone 12. Therefore we
argue that drivers with destination zone 12 actually have zone 12 as their real destination
and want to park their car there.

Figure 5.35.: Scenario 3: Delft, the Netherlands

Destination Demand

9 2223
10 1887
11 1965
12 2673

Table 5.36.: (Scaled) demands for destina-
tion zones considered in sce-
nario 3

9 10 11 12

9 - ✓ ✓ ✗

10 ✓ - ✓ ✓

11 ✓ ✓ - ✓

12 ✗ ✓ ✓ -

Table 5.37.: Walking links between zones
considered in scenario 3
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We continue by discussing the optimization part of this case study. Instead of con-
sidering all integers as possible parking capacities, we only consider multiples of 100 to
keep the solution space somewhat limited.
Note that the total delay is computed for the entire network consisting of 25 zones.

This is because changing parking capacities can change flows throughout the entire
network. However, this does mean that capacities are more subject to change than
the total delay. The parking capacities for all other zones are kept equal to 10000.
Furthermore, only parking in 4 (central) zones out of 25 zones is considered, while the
overwhelming majority of drivers want to travel out of Delft. For this reason, we assign
a smaller weight to the total capacities and a larger weight to the total delay, namely
0.1 and 1 respectively. Furthermore, the implementation of TNO does not provide us
with the total distance covered by cars, so by default, we have to assign a weight of 0 to
the total distance.
We consider the following case. Suppose the city of Delft wants to remove parking

facilities in at least one zone, so at most three zones are allowed to have non-zero parking
capacities. On top of this, suppose the city of Delft has enough budget to double parking
facilities such that the maximum capacity for every zone is equal to 20000. Just to be
complete, we specify a global maximum of 60000 which is redundant in this case.
As we have discussed, the implementation of TNO simply ignores OD pairs when a

route does not exist. However, as we also argued, in our current implementation, we
want to assign a fitness value of 10−14 when this happens. To make sure this does not
happen, we have to make sure there is at least one incoming walking link to every zone.
In this case, it suffices to make sure at least two parking capacities are non-zero. We
denote this minimum amount of parking capacities by nmin. Adding this restriction as a
real restriction to Equation 4.1 gives the same complications as discussed for the global
maximum in Subsection 4.2.3: the crossover and mutation operators can cause solutions
to violate this restriction. Therefore, we also handle this minimum by assigning a fitness
value of 10−14 to solutions having less than two non-zero parking capacities.
The optimization restrictions are summarized in Table 5.38. Just as in scenarios 1

and 2, we choose both the number of iterations and the population size equal to 100.

(w1, w2, w3) nmax cmax B gm nmin

Scenario 3 (0.1,1,0) 3 20000 {9, 10, 11, 12} 60000 2

Table 5.38.: Optimization restrictions for scenario 3

In conclusion, we try to answer two questions regarding the optimization of parking
capacities in Delft:

1. If we want to remove parking in at least one zone and in at most two zones among
zones 9, 10, 11, and 12 in Delft (Figure 5.35), which zone(s) should we select to
maximize the objective function with the chosen weights?

2. Which parking capacities should we choose for the remaining zones to maximize
the objective function with the chosen weights?
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5.3.3. Results

The resulting solutions for the two methods with their corresponding total delays and
fitness values are given in Table 5.39. Also, the total delay and fitness value of the
original situation, where all capacities are equal to 10000, are provided. In Figures 5.40
and 5.41 the fitness, total capacity, and total delay for the best solution in every iteration
are plotted for both methods.

Method Solution Total delay Fitness

fp 19/20 (0, 100, 0, 5900) 20573 4.723 · 10−5

r 19/20 (100, 0, 0, 5800) 20591 4.721 · 10−5

Baseline (10000, 10000, 10000, 10000) 20443 4.091 · 10−5

Table 5.39.: Results for the two methods applied to Delft

The solutions of the two methods provide a significantly higher fitness value than
the original solutions where all capacities are equal to 10000. The fitness values of the
solutions obtained by the two methods are very similar to each other.
In both cases the solutions are also similar: only two parking capacities are non-zero.

Moreover, in both cases, zone 12 is chosen to have a non-zero capacity. The other
zone that has non-zero capacity differs, but in both cases, it gets assigned the minimum
number of capacities, namely 100.
So in principle, it seems like only parking in zone 12 is necessary in terms of maximizing

our objective function. However, as this would cause certain routes to be impossible,
one of the other zones is required to have non-zero capacities. This is similar to what
happened in scenario 1.
In both scenarios, the capacities for zone 12 are chosen approximately equal to 6000.

However, in both cases, it turns out that only roughly 3500 drivers park their cars in
zone 12. Moreover, less than 200 drivers want to park their cars in the other zone that
gets assigned non-zero capacity. The rest of the drivers wanting to travel to zones 9,
10, 11, and 12 park their cars in another zone. This difference between capacity and
parking intensity in zone 12 showcases the trade-off we face. As zones 10 and 11 have
zero capacity and zone 13 has a constant capacity, decreasing the capacity in zone 12
implies an increase in total travel time. If this increase is too large, it is not beneficial
anymore to further decrease capacities.
Looking at the plots, it also seems like the method r 19/20 provides a faster increase

in the fitness value of the best solution. Already after less than 10 iterations the fitness
value of the best solution is approximately 4.72 · 10−5. For the method fp 19/20 this
takes more than 50 iterations. However, after less than 10 iterations, the fitness of the
best solution is still already 4.70·10−5. This could confirm our hypothesis that r 19/20 is
a more suitable method as fitness values become smaller. To really test this hypothesis,
we would have to conduct more experiments though.
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Figure 5.40.: Fitness, total capacity, and total delay for method fp 19/20
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Figure 5.41.: Fitness, total capacity, and total delay for method r 19/20
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5.3.4. Conclusions and Implications

In conclusion, we have provided an answer to the two questions we asked in this case
study. The answer to the first question is that offering parking in zone 12 seems to be
necessary to maximize the objective function. A reason could be that the demand as a
destination for zone 12 is higher than for zone 9, 10, and 11. The answer to the second
question is that the parking capacity of zone 12 should be chosen roughly equal to 6000,
which is significantly larger than the number of cars parking there due to the mentioned
trade-off between the capacities and the travel time.
We saw an increase in fitness from roughly 4.09 · 10−5 to roughly 4.72 · 10−5 for both

methods we applied, which corresponds to an increase of approximately 15 %. The
results also seem to imply that our hypothesis about parent selection is correct: when
dealing with very small fitness values, r 19/20 outperforms fp 19/20. As we discussed
though, to confirm this hypothesis, we would have to conduct more experiments.
It is difficult to directly quantify any concrete gains made by optimizing parking

capacities in this case study as the traffic and parking model still lacks realistic parking
data for the current situation in Delft. Nevertheless, this case study illustrates that we
can apply our parking capacity optimization method to real-life scenarios. This could be
achieved by creating our own traffic and parking model as we have discussed throughout
this thesis. However, this case study has shown that we can use any traffic and parking
model as long as it can be used as follows:

• Input: As input, we want to provide a vector or list of parking capacities corre-
sponding to nodes or zones.

• Output: As output, we want to obtain total travel times and total distance
covered by cars.

• Handling invalid input: As mentioned before, the implementation of TNO
ignores OD pairs for which routes are impossible. For our parking capacity opti-
mization method, we would want the traffic and parking model to explicitly tell
us when parking capacities are invalid.

If these three conditions are satisfied, our method can be applied to optimize parking
capacities, which also highlights its generalizability.
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Conclusion

In this thesis, we have provided a method to optimize parking capacities to minimize a
weighted average of emissions, travel time, and land used for parking. As we discussed
in Chapter 1, no similar research has yet been conducted. We achieved this by answering
two sub-questions we defined in the same chapter:

1. How can we simulate traffic and parking in an urban area?

2. Which techniques can be used to optimize parking capacities and how can these
methods be applied exactly?

To provide an answer to the first question, we started in Chapter 2 by defining a road
network without parking. Such a network exists of nodes representing intersections and
edges representing roads. These edges have a corresponding delay function which is a
function of the flow. We continued this chapter by defining the Wardrop equilibrium, a
situation in which no driver in the network has an incentive to change their route. We
also argued that it is infeasible to compute the Wardrop equilibrium by hand for larger
networks and that it is necessary to consider a numerical method. We provided such a
numerical method, namely the Frank-Wolfe algorithm. We also gave a proof that, under
certain circumstances, the Frank-Wolfe algorithm converges. We finished this chapter
with some practical considerations.
In Section 4.1, we proposed a way to add parking to the traffic network. We extended

the traffic network by adding parking nodes to intersection nodes where the edge between
them represents the park search time. On top of this, we also introduced walking links
which make it possible for travelers to park their car at a different node than their
destination and walk from there to their destination. We finished by discussing the
implications this addition has on the Wardrop equilibrium and its computation.
To answer the second question, we began with a general introduction to optimization in

Chapter 3. We argued that finding the exact optimum is computationally infeasible when
the solution space is too large. Therefore, it is necessary to consider methods that are
only able to provide a sufficiently good solution to an optimization problem, which we call
a metaheuristic. We continued by extensively discussing such a class of metaheuristics,
namely evolutionary algorithms. We finished this chapter by briefly talking through
some other methods and how they compare with evolutionary algorithms.
In Section 4.2 we gave a mathematical formulation of our optimization problem and

the corresponding objective function. In the same section, we also explained how we
can apply evolutionary algorithms to this specific optimization problem. We proposed
to try two different methods to select parents: fitness proportional selection and ranking
selection. On top of this, we also proposed trying three different survivor selection
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methods based on the fraction of the best solutions that survive to the next iteration.
This results in six different methods. In Section 4.3 we discussed how we can implement
everything by putting the optimization part together with the traffic and parking model.
We finished the main body of this thesis with some experiments in Chapter 5. We

started by applying the six proposed methods to a simple example in Section 5.1. We
concluded that except for the method fp 1, our proposed methods are able to find park-
ing capacities that yield high objective function values. However, we don’t know how
close the obtained fitness values are to the optimal fitness value, as it was already com-
putationally infeasible to compute the optimal value for this example.
In Section 5.2 we considered an even smaller network for which it was computationally

feasible to compute the optimum using grid search. We also analyzed how sensitive our
methods are to changes in the optimization framework. We concluded that except for
two out of the six proposed methods, our methods are able to find parking capacities
that yield an objective function value close to the optimum. The methods that were
not able to do so were the two methods where we let the entire population be replaced
by the offspring in every iteration, namely fp 1 and r 1. The method that seemed to
provide us with solutions closest to the exact optimum in the examples of this section,
was fp 19/20. However, it seemed like ranking selection may be preferred over fitness
proportional parent selection when fitness values become very small. This happens when
networks become very large. Therefore it is also good to consider the method r 19/20.

So from these two experiments, we indeed concluded that we have found multiple vari-
ants of evolutionary algorithms to optimize parking capacities to maximize our objective
function. To achieve this, it turned out that it is essential to let part of the best solutions
obtained in a certain iteration survive to the next iteration. This is a deviation from
the popular genetic algorithm proposed by Holland (1975), where the entire population
is replaced every iteration.
Finally, we applied the two methods fp 19/20 and r 19/20 in a case study of the city of

Delft in the Netherlands. These methods were able to find parking capacities yielding a
significantly higher fitness value than the fitness value of the original situation. We saw
an increase of approximately 15% in the fitness value. Although both methods were able
to provide solutions with similar fitness, it did seem like the method r 19/20 converges
faster in this scenario. Therefore, also based on the results from the smaller examples, we
would suggest using this method to optimize parking capacities. However, more research
should be conducted. As we have mentioned, the current traffic and parking model of
Delft still has its shortcomings and does not exactly represent reality yet. However, this
case study highlights the adaptability of our proposed method to large real-life urban
networks and thus shows it can provide benefits to urban planning. It also showcases
the generalizability of our optimization method as it can be applied to other traffic and
parking models.
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Discussion and Future Work

We finish this thesis by discussing the results and conclusions we obtained. We also
propose some future work based on this discussion.
We have discussed throughout this thesis how Python is not suitable for parallel

programming. However, as we also mentioned, parallelizing the Frank-Wolfe algorithm
can provide us with a lot of computational gains. Therefore it is a good idea to consider
another programming language, for example, C++. We also noted that using the current
implementation of the traffic and parking model of Delft by TNO, we cannot parallelize
the evolutionary algorithm. If it turns out that in practice it is impossible to use a
parallel implementation of the evolutionary algorithm, it may be necessary to consider
one of the other methods we briefly discussed, like simulated annealing.
With the help of a parallel implementation of the Frank-Wolfe algorithm, computing

the Wardrop equilibrium will take considerably less time. This means it is possible to
look at larger networks than what is done in this thesis. In particular, grid search is also
computationally feasible for larger networks than the one we have considered. This way,
it is possible to validate our proposed methods on larger networks than what is done in
Section 5.2.
Right now, it is difficult to give an interpretation of the weights we assign to every

variable in the objective function. In every iteration, we could try to standardize every
variable before computing the corresponding objective function values by subtracting the
sample mean and dividing this by the sample variance. However, this means negative
objective function values can occur, which we want to avoid. An alternative is normal-
izing variables by subtracting the minimum and dividing it by the difference between
the maximum and minimum. Even so, the maximum and minimum of the variables
change through different iterations, so it is questionable if this is appropriate. Alterna-
tive methods to better understand the choice of the weights in the objective function
should probably be considered.
In Sections 5.1 and 5.3, it occurred that certain nodes were chosen to have non-zero

parking capacity just for the sake of having a parking facility. This is because this allows
a walking link to go through this node. As walking is not dependent on the flow and as
it does not contribute to the total distance covered by car, letting travelers walk could
help increase the objective function value. Therefore, it could be interesting to consider
minimizing total walking distance as an objective, as proposed by Chen et al. (2001).
The traffic and parking model we have defined in this thesis can still be improved to

fit better with reality. We think the following aspects should be considered first:

• Include trip purpose: As discussed in Section 5.3, it is necessary to exclude
drivers that want to travel out of an urban area as these do not need to park.
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Also, for example, people traveling to their own homes, often have assigned parking
spaces and thus no park search time. This is also something that should be taken
into account.

• Make a distinction between off-street and on-street parking: There is
a big difference between off-street parking and on-street parking. In the case of
off-street parking, drivers typically directly go to the parking facility. In the case
of on-street parking, drivers typically drive randomly around their destination to
find a parking space. This also yields very different park search times. Moreover,
on-street parking is often way less space efficient than off-street parking. A method
to make this distinction is for example provided in Pel and Chaniotakis (2017).

• Extension to multi-modal traffic model: The current model only considers
cars. However, we could also include cycling and public transport. This way we
could also analyze if changing parking capacities for example forces travelers to
choose other, more sustainable, modes of traffic.

In conclusion, in this thesis, we have successfully provided a method to optimize
parking capacities. Nonetheless, we have provided several suggestions for future research.
These suggestions can be summarized as follows:

• Using another programming language, make use of parallel programming.

• Find a method to make it possible to interpret the weights of variables in the
objective function.

• Add minimizing total walking distance as one of the objectives.

• Assign trip purposes to every driver.

• Make a distinction between off-street and on-street parking.

• Extend the traffic model to a multi-modal model.

We hope that these suggestions can help towards improving the optimization of parking
capacities in urban areas even further.

70



Popular Summary

According to CBS (2021), the car is the most used mode of transport in the Netherlands.
Car usage goes paired with fossil fuel emissions and traffic congestion. Parking plays a
crucial role: according to Bonsall and Palmer (2004), up to 40 of the travel time when
traveling to central urban areas is used to find a parking space. Furthermore, parking
facilities take up a lot of space which can be used for other purposes.
The capacities of parking facilities play a crucial role: they are an important factor in

the time it takes to park your car and they are an indication of the space occupied by
parking facilities. The time it takes to park your car is an important factor in the route
you choose, which determines your travel time and (partly) determines your emissions.
The goal of this thesis is to design a method to find parking capacities in an urban area
with three objectives:

• Minimize emissions;

• Minimize travel times;

• Minimize the amount of land occupied by parking spaces.

To achieve this, we start by discussing a way to translate traffic and parking in an
urban area into mathematics. The idea is that we can represent roads and intersections
using a graph. On every road, drivers experience a certain delay, which depends on how
many other cars are on the same road. We represent this by adding weights to the edges
as a function of the flow. An example is given by Figure 5.42.
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Figure 5.42.: Example of a basic traffic network with flows

An important assumption we make is that every driver tries to minimize the time
they have to travel from their origin to their destination. Based on how many drivers
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want to travel and where they want to travel, we can compute the number of drivers
on each road. This results in the so-called Wardrop equilibrium. For readers who have
some knowledge of game theory, this equilibrium is similar to the Nash equilibrium. On
top of this, we also propose a method to extend traffic networks with parking, for which
it turns out that the Wardrop equilibrium still exists.
The number of possible parking capacities we can choose is in practice often very

large. Therefore, it is computationally infeasible to find the best capacities exactly, but
it is still possible to find parking capacities close to the best capacities. The method we
use to do this is the evolutionary algorithm, which is inspired by biological evolution.
In this thesis, we applied this algorithm to find parking capacities with the objectives

mentioned before. We saw that this algorithm was indeed able to find parking capacities
close to the best capacities. Finally, we also showed that our algorithm can be applied
to real-life networks. We did this by applying it to the city of Delft in the Netherlands.
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Bäck, T. (1992). “Self-Adaptation in Genetic Algorithms”. In: Proceedings of the 1st

European Conference on Artificial Life, pp. 263–271.
Bekhor, S., Ben-Akiva, M.E., and Ramming, M.S. (2006). “Evaluation of Choice Set

Generation Algorithms for Route Choice Models”. In: Annals of Operations Research
144.1, pp. 235–247.

Bonsall, P.W. and Palmer, I.A. (2004). “Modelling Drivers’ Car Parking Behaviour Us-
ing Data from a Travel Choice Simulator”. In: Transportation Research Part C:
Emerging Technologies 12.5, pp. 321–347.

Canon, M.D. and Cullum, C.D. (1968). “A Tight Upper Bound on the Rate of Con-
vergence of Frank-Wolfe Algorithm”. In: SIAM Journal on Control 6.4, pp. 509–
516.

Cascetta, E. et al. (2002). “A Model of Route Perception in Urban Road Networks”. In:
Transportation Research Part B: Methodological 36.7, pp. 577–592.

CBS (2021). Hoeveel reisden inwoners van Nederland en hoe? url: https://www.cbs.
nl/nl-nl/visualisaties/verkeer-en-vervoer/personen/hoeveel-reisden-

inwoners-van-nederland-en-hoe- (visited on 06/16/2023).
Chen, J. et al. (2001). “Planning Method of Urban Parking Facilities’ Locating Model

with its Genetic Algorithm”. In: China Journal of Highway and Transport 14.1,
pp. 85–88.

Csikós, A., Tettamanti, T., and Varga, I. (2015). “Macroscopic Modeling and Control of
Emission in Urban Road Traffic Networks”. In: Transport 30.2, pp. 152–161.

D’Acierno, L., Gallo, M., and Montella, B. (2006). “Optimisation Models for the Urban
Parking Pricing Problem”. In: Transport Policy 13, pp. 34–48.

De Jong, K.A. (1975). “An Analysis of the Behavior of a Class of Genetic Adaptive
Systems”. PhD thesis. University of Michigan.

Eiben, A.E and Smith, J.E. (2003). Introduction to Evolutionary Computing. 1st ed.
Natural Computing Series. Heidelberg: Springer Berlin.

Frank, M. and Wolfe, P. (1956). “An Algorithm for Quadratic Programming”. In: Naval
Research Logistics Quarterly 3.1-2, pp. 95–110.

73

https://www.anwb.nl/verkeer/nieuws/nederland/2023/juli/filezwaarte-juli-2023
https://www.anwb.nl/verkeer/nieuws/nederland/2023/juli/filezwaarte-juli-2023
https://www.cbs.nl/nl-nl/visualisaties/verkeer-en-vervoer/personen/hoeveel-reisden-inwoners-van-nederland-en-hoe-
https://www.cbs.nl/nl-nl/visualisaties/verkeer-en-vervoer/personen/hoeveel-reisden-inwoners-van-nederland-en-hoe-
https://www.cbs.nl/nl-nl/visualisaties/verkeer-en-vervoer/personen/hoeveel-reisden-inwoners-van-nederland-en-hoe-


Gemeente Amsterdam (2023).Druktebeeld. url: https://druktebeeld.amsterdam.nl/
(visited on 05/23/2023).

Glover, F. (1986). “Future Paths for Integer Programming and Links to Artificial Intel-
ligence”. In: Computers & Operations Research 13.5, pp. 533–549.

Haurie, A. and Marcotte, P. (1985). “On the Relationship between Nash-Cournot and
Wardrop Equilibria”. In: Networks 15.3, pp. 295–308.

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. 1st ed. Ann Arbor:
University of Michigan Press.

Jaggi, M. (2013). “Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimiza-
tion”. In: Proceedings of the 30th International Conference on Machine Learning.
Vol. 28. 1. PMLR, pp. 427–435.

Kelly, F.P. and Yudovina, E. (2014). Stochastic Networks. 1st ed. Cambridge: Cambridge
University Press.

Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. (1983). “Optimization by Simulated
Annealing”. In: Science 220.4598, pp. 671–680.

Kuys, D. (2022). “Er is in Nederland meer parkeerruimte voor auto’s dan woonruimte
voor mensen”. In: VPRO. url: https://www.vpro.nl/programmas/tegenlicht/
lees/artikelen/2022/fietsprofessor.html (visited on 06/20/2023).

Lam, W.H.K. et al. (2006). “Modeling Time-dependent Travel Choice Problems in Road
Networks with Multiple User Classes and Multiple Parking Facilities”. In: Trans-
portation Research Part B: Methodological 40.5, pp. 368–395.

Manikas, T.W. and Cain, J.T. (1996). Genetic Algorithms vs. Simulated Annealing: A
Comparison of Approaches for Solving the Circuit Partitioning Problem. Tech. rep.
The University of Pittsburgh.

Miller, B.N. and Ranum, D.L. (2011). Problem Solving with Algorithms and Data Struc-
tures Using Python. 2nd ed. Portland: Franklin, Beedle & Associates.

Muijlwijk, H. (2012). “Static Traffic Assignment with Junction Modelling”. MSc Thesis.
University of Twente.

Negnevitsky, M. (2011). Artificial Intelligence: A Guide to Intelligent Systems. 2nd ed.
Essex: Pearson Education Limited.

Nocedal, J. and Wright, S. (2006). Numerical Optimization. 2nd ed. Springer Series in
Operations Research and Financial Engineering. New York: Springer Science+Business
Media.

Pel, A.J. and Chaniotakis, E. (2017). “Stochastic User Equilibrium Traffic Assignment
with Equilibrated Parking Search Routes”. In: Transportation Research Part B:
Methodological 101.C, pp. 123–139.

Pierce, G., Willson, H., and Shoup, D. (2015). “Optimizing the Use of Public Garages:
Pricing Parking by Demand”. In: Transport Policy 44, pp. 89–95.

Ruan, J.M. et al. (2016). “How Many and Where to Locate Parking Lots? A Space–time
Accessibility-Maximization Modeling Framework for Special Event Traffic Manage-
ment”. In: Urban Rail Transit 2, pp. 59–70.

Ryan, J.M. (1979). Urban Transportation Planning System (UTPS): The Community
Aggregate Planning Model (CAPM) Users’ Guide. Report - Urban Mass Transporta-

74

https://druktebeeld.amsterdam.nl/
https://www.vpro.nl/programmas/tegenlicht/lees/artikelen/2022/fietsprofessor.html
https://www.vpro.nl/programmas/tegenlicht/lees/artikelen/2022/fietsprofessor.html


tion Administration. Federal Highway Administration, [Office of Highway Planning],
Urban Planning Division, Technical Branch.

Sheffi, Y. (1985). Urban Transportation Networks: Equilibrium Analysis With Mathe-
matical Programming Methods. 1st ed. Englewood Cliffs: Prentice-Hall.

Shen, T., Hua, K., and Liu, J. (2019). “Optimized Public Parking Location Modelling
for Green Intelligent Transportation System Using Genetic Algorithms”. In: IEEE
Access 7, pp. 1–1.

Wikipedia (2023a). Double-precision Floating-point Format — Wikipedia, The Free En-
cyclopedia. url: https://en.wikipedia.org/wiki/Double-precision_floating-
point_format (visited on 08/02/2023).

— (2023b). Simulated Annealing — Wikipedia, The Free Encyclopedia. url: http:
//en.wikipedia.org/w/index.php?title=Simulated%5C%20annealing&oldid=

1154654876 (visited on 05/19/2023).
Wolpert, D.H. and Macready, W.G. (1997). “No Free Lunch Theorems for Optimization”.

In: IEEE Transactions Evolutionary Computing 1, pp. 67–82.
Zhou, X. (2018). “On the Fenchel Duality between Strong Convexity and Lipschitz

Continuous Gradient.” arXiv preprint arXiv:1803.06573.

75

https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://en.wikipedia.org/w/index.php?title=Simulated%5C%20annealing&oldid=1154654876
http://en.wikipedia.org/w/index.php?title=Simulated%5C%20annealing&oldid=1154654876
http://en.wikipedia.org/w/index.php?title=Simulated%5C%20annealing&oldid=1154654876


A. Boundedness of Curvature Constant

In this appendix, we provide a proof of the boundedness of the curvature constant Cf in
the context of the Frank-Wolfe algorithm applied to find the Wardrop equilibrium. We
start with proving an equivalence of three statements. The proof of this equivalence is
based on Zhou (2018).

Lemma A.1. Let f be differentiable and let ∇f be L-Lipschitz continuous. Then the
following three statements are equivalent:

(i) (∇f(y)−∇f(w))T (y − w) ≤ L||y − w||2 ∀y, w.

(ii) The function g(y) := 1
2y

T y − f(y) is convex.

(iii) f(w)− f(y)− f(y)T (w − y) ≤ L
2 ||w − y||2 ∀y, w.

Proof.

• (i) ⇐⇒ (ii): Suppose (i) holds. We get

(∇f(y)−∇f(w))T (y − w) ≤ L||y − w||2, ∀y, w ⇐⇒
(L(y − w)− (∇f(y)−∇f(w))T (y − w) ≥ 0, ∀y, w ⇐⇒

(∇g(y)−∇g(w))T (y − w) ≥ 0, ∀y, w,

which is equivalent with g(y) := 1
2y

T y − f(y) being convex by the monotone gra-
dient condition for convexity.

• (ii) ⇐⇒ (iii): Suppose now that g(y) := 1
2y

T y − f(y) is convex. Then using the
first-order condition for convexity, this is equivalent to g(w) ≥ g(y)+∇g(y)T (w−y)
for all y, w. We then have

g(w) ≥ g(y) +∇g(y)T (w − y), ∀y, w ⇐⇒
L

2
wTw − f(w) ≥ L

2
yT y − f(y) + (Ly −∇f(y))T (w − y), ∀y, w ⇐⇒

f(w)− f(y)−∇f(y)T (w − y) ≤ 1

2
||w − y||2, ∀y, w,

which concludes the proof.

We can now prove a useful property of differentiable functions with L-Lipschitz con-
tinuous gradient.
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Lemma A.2. Let f be differentiable and let ∇f be L-Lipschitz continuous. Then it
holds that f(w)− f(y)−∇f(y)T (w − y) ≤ L

2 ||w − y||2.

Proof. By the L-Lipschitz continuity of ∇f , we have

||∇f(y)−∇f(w)|| ≤ L||y − w||2, ∀y, w.

Using the Cauchy-Schwarz inequality, we then obtain

(∇f(y)−∇f(w))T (y − w) ≤ L||y − w||2, ∀y, w.

We can now apply Lemma A.1 to conclude that

f(w)− f(y)− f(y)T (w − y) ≤ L

2
||w − y||2

Finally, we can prove that the curvature constant Cf is indeed bounded in the context
of the Frank-Wolfe algorithm.

Theorem A.3. Let f be a convex and continuously differentiable function defined on
a compact convex set D. Additionally, let ∇f be L-Lipschitz continuous. Then it holds
that 0 ≤ Cf ≤ L · diam(D) < ∞.

Proof. First, note that by convexity of f , it holds that f(w)− f(y)−⟨w− y,∇f(y)⟩ ≥ 0
for all w, y ∈ D, so Cf ≥ 0. As ∇f is L-Lipschitz continuous, we can apply Lemma A.2
and we then see that

Cf = sup
y,z∈D
α∈[0,1]

w=y+α(z−y)

2

α2
(f(w)− f(y)− ⟨w − y,∇f(y)⟩)

≤ sup
y,z∈D
α∈[0,1]

w=y+α(z−y)

2

α2

L

2
||w − y||2

= sup
y,z∈D
α∈[0,1]

L

α2
||α(z − y)||2

= sup
y,z∈D

L||z − y||2

= L · diam(D)

We assumed D to be compact, so by the Heine-Borel Theorem, we know that D is
bounded. It then follows immediately that Cf is indeed bounded as well.
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